コード例 #1
0
    def __init__(self, kernel_size, iterations=1, random=True):
        if isinstance(kernel_size, int):
            kernel_size = kernel_size, kernel_size + 1
        elif not mmcv.is_tuple_of(kernel_size, int) or len(kernel_size) != 2:
            raise ValueError('kernel_size must be an int or a tuple of 2 int, '
                             f'but got {kernel_size}')

        if isinstance(iterations, int):
            iterations = iterations, iterations + 1
        elif not mmcv.is_tuple_of(iterations, int) or len(iterations) != 2:
            raise ValueError('iterations must be an int or a tuple of 2 int, '
                             f'but got {iterations}')

        self.random = random
        if self.random:
            min_kernel, max_kernel = kernel_size
            self.iterations = iterations
            self.kernels = [
                cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
                for size in range(min_kernel, max_kernel)
            ]
        else:
            erode_ksize, dilate_ksize = kernel_size
            self.iterations = iterations
            self.kernels = [
                cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
                                          (erode_ksize, erode_ksize)),
                cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
                                          (dilate_ksize, dilate_ksize))
            ]
コード例 #2
0
ファイル: crop.py プロジェクト: open-mmlab/mmediting
    def __init__(self,
                 keys,
                 crop_size,
                 scale=(0.08, 1.0),
                 ratio=(3. / 4., 4. / 3.),
                 interpolation='bilinear'):
        assert keys, 'Keys should not be empty.'
        if isinstance(crop_size, int):
            crop_size = (crop_size, crop_size)
        elif not mmcv.is_tuple_of(crop_size, int):
            raise TypeError('"crop_size" must be an integer '
                            'or a tuple of integers, but got '
                            f'{type(crop_size)}')
        if not mmcv.is_tuple_of(scale, float):
            raise TypeError('"scale" must be a tuple of float, '
                            f'but got {type(scale)}')
        if not mmcv.is_tuple_of(ratio, float):
            raise TypeError('"ratio" must be a tuple of float, '
                            f'but got {type(ratio)}')

        self.keys = keys
        self.crop_size = crop_size
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation
コード例 #3
0
 def __init__(self,
              area_range=(0.08, 1.0),
              aspect_ratio_range=(3 / 4, 4 / 3),
              lazy=False):
     self.area_range = area_range
     self.aspect_ratio_range = aspect_ratio_range
     self.lazy = lazy
     if not mmcv.is_tuple_of(self.area_range, float):
         raise TypeError(f'Area_range must be a tuple of float, '
                         f'but got {type(area_range)}')
     if not mmcv.is_tuple_of(self.aspect_ratio_range, float):
         raise TypeError(f'Aspect_ratio_range must be a tuple of float, '
                         f'but got {type(aspect_ratio_range)}')
コード例 #4
0
    def __init__(self, keys, crop_size, crop_pos=None):
        if not mmcv.is_tuple_of(crop_size, int):
            raise TypeError(
                'Elements of crop_size must be int and crop_size must be'
                f' tuple, but got {type(crop_size[0])} in {type(crop_size)}')
        if not mmcv.is_tuple_of(crop_pos, int) and (crop_pos is not None):
            raise TypeError(
                'Elements of crop_pos must be int and crop_pos must be'
                f' tuple or None, but got {type(crop_pos[0])} in '
                f'{type(crop_pos)}')

        self.keys = keys
        self.crop_size = crop_size
        self.crop_pos = crop_pos
コード例 #5
0
 def __init__(self,
              channels,
              ratio=4,
              conv_cfg=None,
              act_cfg=(dict(type='ReLU'),
                       dict(type='HSigmoid', bias=3.0, divisor=6.0)),
              init_cfg=None):
     super().__init__(init_cfg=init_cfg)
     if isinstance(act_cfg, dict):
         act_cfg = (act_cfg, act_cfg)
     assert len(act_cfg) == 2
     assert mmcv.is_tuple_of(act_cfg, dict)
     self.channels = channels
     self.expansion = 4  # for a1, b1, a2, b2
     self.global_avgpool = nn.AdaptiveAvgPool2d(1)
     self.conv1 = ConvModule(in_channels=channels,
                             out_channels=int(channels / ratio),
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             act_cfg=act_cfg[0])
     self.conv2 = ConvModule(in_channels=int(channels / ratio),
                             out_channels=channels * self.expansion,
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             act_cfg=act_cfg[1])
コード例 #6
0
    def __init__(self,
                 arch='small',
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 out_indices=(0, 1, 12),
                 frozen_stages=-1,
                 reduction_factor=1,
                 norm_eval=False,
                 with_cp=False):
        super(MobileNetV3, self).__init__()
        assert arch in self.arch_settings
        assert isinstance(reduction_factor, int) and reduction_factor > 0
        assert mmcv.is_tuple_of(out_indices, int)
        for index in out_indices:
            if index not in range(0, len(self.arch_settings[arch]) + 2):
                raise ValueError(
                    'the item in out_indices must in '
                    f'range(0, {len(self.arch_settings[arch])+2}). '
                    f'But received {index}')

        if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2):
            raise ValueError('frozen_stages must be in range(-1, '
                             f'{len(self.arch_settings[arch])+2}). '
                             f'But received {frozen_stages}')
        self.arch = arch
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.reduction_factor = reduction_factor
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.layers = self._make_layer()
コード例 #7
0
 def __init__(self,
              channels,
              ratio=16,
              conv_cfg=None,
              act_cfg=(dict(type='ReLU'),
                       dict(type='HSigmoid', bias=3.0, divisor=6.0))):
     super(SELayer, self).__init__()
     if isinstance(act_cfg, dict):
         act_cfg = (act_cfg, act_cfg)
     assert len(act_cfg) == 2
     assert mmcv.is_tuple_of(act_cfg, dict)
     self.global_avgpool = nn.AdaptiveAvgPool2d(1)
     self.conv1 = ConvModule(in_channels=channels,
                             out_channels=make_divisible(
                                 channels // ratio, 8),
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             act_cfg=act_cfg[0])
     self.conv2 = ConvModule(in_channels=make_divisible(
         channels // ratio, 8),
                             out_channels=channels,
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             act_cfg=act_cfg[1])
コード例 #8
0
    def __init__(self,
                 module_keys,
                 interp_mode='lerp',
                 interp_cfg=None,
                 interval=-1,
                 start_iter=0):
        super().__init__()
        assert isinstance(module_keys, str) or mmcv.is_tuple_of(
            module_keys, str)
        self.module_keys = (module_keys, ) if isinstance(module_keys,
                                                         str) else module_keys
        # sanity check for the format of module keys
        for k in self.module_keys:
            assert k.endswith(
                '_ema'), 'You should give keys that end with "_ema".'
        self.interp_mode = interp_mode
        self.interp_cfg = dict() if interp_cfg is None else deepcopy(
            interp_cfg)
        self.interval = interval
        self.start_iter = start_iter

        assert hasattr(
            self, interp_mode
        ), f'Currently, we do not support {self.interp_mode} for EMA.'
        self.interp_func = partial(
            getattr(self, interp_mode), **self.interp_cfg)
コード例 #9
0
ファイル: augmentations.py プロジェクト: dreamerlin/MVFNet
 def __init__(self, input_size, scale=(256, 320)):
     if isinstance(input_size, int):
         self.input_size = (input_size, input_size)
     else:
         self.input_size = input_size
     assert mmcv.is_tuple_of(self.input_size, int)
     self.scale = scale
コード例 #10
0
ファイル: eahrnet_ca.py プロジェクト: EileenWang90/mmpose
    def __init__(self,
                 channels,
                 ratio=32,
                 conv_cfg=None,
                 act_cfg=(dict(type='ReLU'), dict(type='Sigmoid'))):
        super().__init__()
        if isinstance(act_cfg, dict):
            act_cfg = (act_cfg, act_cfg)
        assert len(act_cfg) == 2
        assert mmcv.is_tuple_of(act_cfg, dict)
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, channels // ratio)

        self.conv1 = nn.Conv2d(channels,
                               mip,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip,
                                channels,
                                kernel_size=1,
                                stride=1,
                                padding=0)
        self.conv_w = nn.Conv2d(mip,
                                channels,
                                kernel_size=1,
                                stride=1,
                                padding=0)
コード例 #11
0
ファイル: eahrnet_ca.py プロジェクト: EileenWang90/mmpose
 def __init__(self,
              channels,
              ratio=16,
              conv_cfg=None,
              norm_cfg=None,
              act_cfg=(dict(type='ReLU'), dict(type='Sigmoid'))):
     super().__init__()
     if isinstance(act_cfg, dict):
         act_cfg = (act_cfg, act_cfg)
     assert len(act_cfg) == 2
     assert mmcv.is_tuple_of(act_cfg, dict)
     self.channels = channels
     total_channel = sum(channels)
     self.conv1 = ConvModule(in_channels=total_channel,
                             out_channels=int(total_channel / ratio),
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             norm_cfg=norm_cfg,
                             act_cfg=act_cfg[0])
     self.conv2 = ConvModule(in_channels=int(total_channel / ratio),
                             out_channels=total_channel,
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             norm_cfg=norm_cfg,
                             act_cfg=act_cfg[1])
コード例 #12
0
 def __init__(self,
              channels,
              squeeze_channels=None,
              ratio=16,
              divisor=8,
              bias='auto',
              conv_cfg=None,
              act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')),
              init_cfg=None):
     super(SELayer, self).__init__(init_cfg)
     if isinstance(act_cfg, dict):
         act_cfg = (act_cfg, act_cfg)
     assert len(act_cfg) == 2
     assert mmcv.is_tuple_of(act_cfg, dict)
     self.global_avgpool = nn.AdaptiveAvgPool2d(1)
     if squeeze_channels is None:
         squeeze_channels = make_divisible(channels // ratio, divisor)
     assert isinstance(squeeze_channels, int) and squeeze_channels > 0, \
         '"squeeze_channels" should be a positive integer, but get ' + \
         f'{squeeze_channels} instead.'
     self.conv1 = ConvModule(in_channels=channels,
                             out_channels=squeeze_channels,
                             kernel_size=1,
                             stride=1,
                             bias=bias,
                             conv_cfg=conv_cfg,
                             act_cfg=act_cfg[0])
     self.conv2 = ConvModule(in_channels=squeeze_channels,
                             out_channels=channels,
                             kernel_size=1,
                             stride=1,
                             bias=bias,
                             conv_cfg=conv_cfg,
                             act_cfg=act_cfg[1])
コード例 #13
0
ファイル: litehrnet.py プロジェクト: open-mmlab/mmpose
 def __init__(self,
              channels,
              ratio=16,
              conv_cfg=None,
              norm_cfg=None,
              act_cfg=(dict(type='ReLU'), dict(type='Sigmoid'))):
     super().__init__()
     if isinstance(act_cfg, dict):
         act_cfg = (act_cfg, act_cfg)
     assert len(act_cfg) == 2
     assert mmcv.is_tuple_of(act_cfg, dict)
     self.global_avgpool = nn.AdaptiveAvgPool2d(1)
     self.conv1 = ConvModule(in_channels=channels,
                             out_channels=int(channels / ratio),
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             norm_cfg=norm_cfg,
                             act_cfg=act_cfg[0])
     self.conv2 = ConvModule(in_channels=int(channels / ratio),
                             out_channels=channels,
                             kernel_size=1,
                             stride=1,
                             conv_cfg=conv_cfg,
                             norm_cfg=norm_cfg,
                             act_cfg=act_cfg[1])
コード例 #14
0
ファイル: loading.py プロジェクト: zhaoyue-zephyrus/mmaction2
 def __init__(self,
              clip_len,
              body_segments,
              aug_segments,
              aug_ratio,
              frame_interval=1,
              test_interval=6,
              start_index=1,
              temporal_jitter=False,
              mode='train'):
     super().__init__(clip_len,
                      frame_interval=frame_interval,
                      start_index=start_index,
                      temporal_jitter=temporal_jitter)
     self.body_segments = body_segments
     self.aug_segments = aug_segments
     self.aug_ratio = _pair(aug_ratio)
     if not mmcv.is_tuple_of(self.aug_ratio, (int, float)):
         raise TypeError(f'aug_ratio should be int, float'
                         f'or tuple of int and float, '
                         f'but got {type(aug_ratio)}')
     assert len(self.aug_ratio) == 2
     assert mode in ['train', 'val', 'test']
     self.mode = mode
     self.test_interval = test_interval
コード例 #15
0
    def __init__(self,
                 keys,
                 crop_sizes,
                 unknown_source='alpha',
                 interpolations='bilinear'):
        if 'alpha' not in keys:
            raise ValueError(f'"alpha" must be in keys, but got {keys}')
        self.keys = keys

        if not isinstance(crop_sizes, list):
            raise TypeError(
                f'Crop sizes must be list, but got {type(crop_sizes)}.')
        self.crop_sizes = [_pair(crop_size) for crop_size in crop_sizes]
        if not mmcv.is_tuple_of(self.crop_sizes[0], int):
            raise TypeError('Elements of crop_sizes must be int or tuple of '
                            f'int, but got {type(self.crop_sizes[0][0])}.')

        if unknown_source not in ['alpha', 'trimap']:
            raise ValueError('unknown_source must be "alpha" or "trimap", '
                             f'but got {unknown_source}')
        elif unknown_source not in keys:
            # it could only be trimap, since alpha is checked before
            raise ValueError(
                'if unknown_source is "trimap", it must also be set in keys')
        self.unknown_source = unknown_source

        if isinstance(interpolations, str):
            self.interpolations = [interpolations] * len(self.keys)
        elif mmcv.is_list_of(interpolations,
                             str) and len(interpolations) == len(self.keys):
            self.interpolations = interpolations
        else:
            raise TypeError(
                'interpolations must be a str or list of str with '
                f'the same length as keys, but got {interpolations}')
コード例 #16
0
 def __init__(self, crop_size):
     if mmcv.is_tuple_of(crop_size, int):
         assert len(crop_size) == 2, 'length of crop_size must be 2.'
     elif not isinstance(crop_size, int):
         raise TypeError('crop_size must be int or a tuple of int, but got '
                         f'{type(crop_size)}')
     self.crop_size = _pair(crop_size)
コード例 #17
0
    def __init__(self, keys, crop_size, random_crop=True):
        if not mmcv.is_tuple_of(crop_size, int):
            raise TypeError(
                'Elements of crop_size must be int and crop_size must be'
                f' tuple, but got {type(crop_size[0])} in {type(crop_size)}')

        self.keys = keys
        self.crop_size = crop_size
        self.random_crop = random_crop
コード例 #18
0
ファイル: augmentations.py プロジェクト: dreamerlin/MVFNet
 def __init__(self, input_size, scale=(0.08, 1.0),
              ratio=(3. / 4., 4. / 3.)):
     if isinstance(input_size, int):
         self.input_size = (input_size, input_size)
     else:
         self.input_size = input_size
     assert mmcv.is_tuple_of(self.input_size, int)
     self.scale = scale
     self.ratio = ratio
コード例 #19
0
def test_is_seq_of():
    assert mmcv.is_seq_of([1.0, 2.0, 3.0], float)
    assert mmcv.is_seq_of([(1, ), (2, ), (3, )], tuple)
    assert mmcv.is_seq_of((1.0, 2.0, 3.0), float)
    assert mmcv.is_list_of([1.0, 2.0, 3.0], float)
    assert not mmcv.is_seq_of((1.0, 2.0, 3.0), float, seq_type=list)
    assert not mmcv.is_tuple_of([1.0, 2.0, 3.0], float)
    assert not mmcv.is_seq_of([1.0, 2, 3], int)
    assert not mmcv.is_seq_of((1.0, 2, 3), int)
コード例 #20
0
 def __init__(self, keys, bd_ratio_range=(0.1, 0.4), test_mode=False):
     if 'seg' not in keys:
         raise ValueError(f'"seg" must be in keys, but got {keys}')
     if (not mmcv.is_tuple_of(bd_ratio_range, float)
             or len(bd_ratio_range) != 2):
         raise TypeError('bd_ratio_range must be a tuple of 2 int, but got '
                         f'{bd_ratio_range}')
     self.keys = keys
     self.bd_ratio_range = bd_ratio_range
     self.test_mode = test_mode
コード例 #21
0
    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(bbox_enlarge_range,
                                           dtype=np.float32)[np.newaxis, :]
    def __init__(self,
                 arch='small',
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 out_indices=(0, 1, 12),
                 frozen_stages=-1,
                 reduction_factor=1,
                 norm_eval=False,
                 with_cp=False,
                 pretrained=None,
                 init_cfg=None):
        super(MobileNetV3, self).__init__(init_cfg)

        self.pretrained = pretrained
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be setting at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is a deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(
                        type='Constant',
                        val=1,
                        layer=['_BatchNorm', 'GroupNorm'])
                ]
        else:
            raise TypeError('pretrained must be a str or None')

        assert arch in self.arch_settings
        assert isinstance(reduction_factor, int) and reduction_factor > 0
        assert mmcv.is_tuple_of(out_indices, int)
        for index in out_indices:
            if index not in range(0, len(self.arch_settings[arch]) + 2):
                raise ValueError(
                    'the item in out_indices must in '
                    f'range(0, {len(self.arch_settings[arch])+2}). '
                    f'But received {index}')

        if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2):
            raise ValueError('frozen_stages must be in range(-1, '
                             f'{len(self.arch_settings[arch])+2}). '
                             f'But received {frozen_stages}')
        self.arch = arch
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.reduction_factor = reduction_factor
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.layers = self._make_layer()
コード例 #23
0
    def __init__(self, crop_size, groups):
        self.crop_size = _pair(crop_size)
        self.groups = groups
        if not mmcv.is_tuple_of(self.crop_size, int):
            raise TypeError(
                'Crop size must be int or tuple of int, but got {}'.format(
                    type(crop_size)))

        if not isinstance(groups, int):
            raise TypeError(f'Groups must be int, but got {type(groups)}.')

        if groups <= 0:
            raise ValueError('Groups must be positive.')
コード例 #24
0
    def __init__(self, keys, degrees):
        if isinstance(degrees, (int, float)):
            if degrees < 0.0:
                raise ValueError('Degrees must be positive if it is a number.')
            else:
                degrees = (-degrees, degrees)
        elif not mmcv.is_tuple_of(degrees, (int, float)):
            raise TypeError(f'Degrees must be float | int or tuple of float | '
                            'int, but got '
                            f'{type(degrees)}.')

        self.keys = keys
        self.degrees = degrees
コード例 #25
0
    def __init__(self,
                 fg_thr=0.2,
                 border_width=25,
                 erode_ksize=3,
                 dilate_ksize=5,
                 erode_iter_range=(10, 20),
                 dilate_iter_range=(3, 7),
                 blur_ksizes=[(21, 21), (31, 31), (41, 41)]):
        if not isinstance(fg_thr, float):
            raise TypeError(f'fg_thr must be a float, but got {type(fg_thr)}')
        if not isinstance(border_width, int):
            raise TypeError(
                f'border_width must be an int, but got {type(border_width)}')
        if not isinstance(erode_ksize, int):
            raise TypeError(
                f'erode_ksize must be an int, but got {type(erode_ksize)}')
        if not isinstance(dilate_ksize, int):
            raise TypeError(
                f'dilate_ksize must be an int, but got {type(dilate_ksize)}')
        if (not mmcv.is_tuple_of(erode_iter_range, int)
                or len(erode_iter_range) != 2):
            raise TypeError('erode_iter_range must be a tuple of 2 int, '
                            f'but got {erode_iter_range}')
        if (not mmcv.is_tuple_of(dilate_iter_range, int)
                or len(dilate_iter_range) != 2):
            raise TypeError('dilate_iter_range must be a tuple of 2 int, '
                            f'but got {dilate_iter_range}')
        if not mmcv.is_list_of(blur_ksizes, tuple):
            raise TypeError(
                f'blur_ksizes must be a list of tuple, but got {blur_ksizes}')

        self.fg_thr = fg_thr
        self.border_width = border_width
        self.erode_ksize = erode_ksize
        self.dilate_ksize = dilate_ksize
        self.erode_iter_range = erode_iter_range
        self.dilate_iter_range = dilate_iter_range
        self.blur_ksizes = blur_ksizes
コード例 #26
0
ファイル: eahrnet_ca.py プロジェクト: EileenWang90/mmpose
 def __init__(self,
              channels,
              ratio=16,
              conv_cfg=None,
              act_cfg=(dict(type='ReLU'), dict(type='Sigmoid'))):
     super().__init__()
     if isinstance(act_cfg, dict):
         act_cfg = (act_cfg, act_cfg)
     assert len(act_cfg) == 2
     assert mmcv.is_tuple_of(act_cfg, dict)
     self.global_avgpool = nn.AdaptiveAvgPool2d(1)
     # self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
     self.conv = nn.Conv1d(1, 1, kernel_size=3, padding=1, bias=False)
     self.sigmoid = nn.Sigmoid()
コード例 #27
0
    def __init__(self,
                 in_channels,
                 vote_per_seed=1,
                 gt_per_seed=3,
                 num_points=-1,
                 conv_channels=(16, 16),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 act_cfg=dict(type='ReLU'),
                 norm_feats=True,
                 with_res_feat=True,
                 vote_xyz_range=None,
                 vote_loss=None):
        super().__init__()
        self.in_channels = in_channels
        self.vote_per_seed = vote_per_seed
        self.gt_per_seed = gt_per_seed
        self.num_points = num_points
        self.norm_feats = norm_feats
        self.with_res_feat = with_res_feat

        assert vote_xyz_range is None or is_tuple_of(vote_xyz_range, float)
        self.vote_xyz_range = vote_xyz_range

        if vote_loss is not None:
            self.vote_loss = build_loss(vote_loss)

        prev_channels = in_channels
        vote_conv_list = list()
        for k in range(len(conv_channels)):
            vote_conv_list.append(
                ConvModule(
                    prev_channels,
                    conv_channels[k],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
                    bias=True,
                    inplace=True))
            prev_channels = conv_channels[k]
        self.vote_conv = nn.Sequential(*vote_conv_list)

        # conv_out predicts coordinate and residual features
        if with_res_feat:
            out_channel = (3 + in_channels) * self.vote_per_seed
        else:
            out_channel = 3 * self.vote_per_seed
        self.conv_out = nn.Conv1d(prev_channels, out_channel, 1)
コード例 #28
0
    def forward(ctx, rois, pts, pts_feature, out_size, max_pts_per_voxel,
                mode):
        """
        Args:
            rois (torch.Tensor): [N, 7], in LiDAR coordinate,
                (x, y, z) is the bottom center of rois.
            pts (torch.Tensor): [npoints, 3], coordinates of input points.
            pts_feature (torch.Tensor): [npoints, C], features of input points.
            out_size (int or tuple): The size of output features. n or
                [n1, n2, n3].
            max_pts_per_voxel (int): The maximum number of points per voxel.
                Default: 128.
            mode (int): Pooling method of RoIAware, 0 (max pool) or 1 (average
                pool).

        Returns:
            pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C], output
                pooled features.
        """

        if isinstance(out_size, int):
            out_x = out_y = out_z = out_size
        else:
            assert len(out_size) == 3
            assert mmcv.is_tuple_of(out_size, int)
            out_x, out_y, out_z = out_size

        num_rois = rois.shape[0]
        num_channels = pts_feature.shape[-1]
        num_pts = pts.shape[0]

        pooled_features = pts_feature.new_zeros(
            (num_rois, out_x, out_y, out_z, num_channels))
        argmax = pts_feature.new_zeros(
            (num_rois, out_x, out_y, out_z, num_channels), dtype=torch.int)
        pts_idx_of_voxels = pts_feature.new_zeros(
            (num_rois, out_x, out_y, out_z, max_pts_per_voxel),
            dtype=torch.int)

        ext_module.roiaware_pool3d_forward(rois,
                                           pts,
                                           pts_feature,
                                           argmax,
                                           pts_idx_of_voxels,
                                           pooled_features,
                                           pool_method=mode)

        ctx.roiaware_pool3d_for_backward = (pts_idx_of_voxels, argmax, mode,
                                            num_pts, num_channels)
        return pooled_features
コード例 #29
0
ファイル: ema_hook.py プロジェクト: plyfager/mmgeneration
    def __init__(self,
                 module_keys,
                 interp_mode='lerp',
                 interp_cfg=None,
                 interval=-1,
                 start_iter=0,
                 momentum_policy='fixed',
                 momentum_cfg=None):
        super().__init__()
        # check args
        assert interp_mode in self._registered_interp_funcs, (
            'Supported '
            f'interpolation functions are {self._registered_interp_funcs}, '
            f'but got {interp_mode}')

        assert momentum_policy in self._registered_momentum_updaters, (
            'Supported momentum policy are'
            f'{self._registered_momentum_updaters},'
            f' but got {momentum_policy}')

        assert isinstance(module_keys, str) or mmcv.is_tuple_of(
            module_keys, str)
        self.module_keys = (module_keys, ) if isinstance(module_keys,
                                                         str) else module_keys
        # sanity check for the format of module keys
        for k in self.module_keys:
            assert k.endswith(
                '_ema'), 'You should give keys that end with "_ema".'
        self.interp_mode = interp_mode
        self.interp_cfg = dict() if interp_cfg is None else deepcopy(
            interp_cfg)
        self.interval = interval
        self.start_iter = start_iter

        assert hasattr(
            self, interp_mode
        ), f'Currently, we do not support {self.interp_mode} for EMA.'
        self.interp_func = getattr(self, interp_mode)

        self.momentum_cfg = dict() if momentum_cfg is None else deepcopy(
            momentum_cfg)
        self.momentum_policy = momentum_policy
        if momentum_policy != 'fixed':
            assert hasattr(
                self, momentum_policy
            ), f'Currently, we do not support {self.momentum_policy} for EMA.'
            self.momentum_updater = getattr(self, momentum_policy)
コード例 #30
0
 def __init__(self,
              keys,
              scale=None,
              keep_ratio=False,
              size_factor=None,
              max_size=None,
              interpolation='bilinear',
              backend=None,
              output_keys=None):
     assert keys, 'Keys should not be empty.'
     if output_keys:
         assert len(output_keys) == len(keys)
     else:
         output_keys = keys
     if size_factor:
         assert scale is None, ('When size_factor is used, scale should ',
                                f'be None. But received {scale}.')
         assert keep_ratio is False, ('When size_factor is used, '
                                      'keep_ratio should be False.')
     if max_size:
         assert size_factor is not None, (
             'When max_size is used, '
             f'size_factor should also be set. But received {size_factor}.')
     if isinstance(scale, float):
         if scale <= 0:
             raise ValueError(f'Invalid scale {scale}, must be positive.')
     elif mmcv.is_tuple_of(scale, int):
         max_long_edge = max(scale)
         max_short_edge = min(scale)
         if max_short_edge == -1:
             # assign np.inf to long edge for rescaling short edge later.
             scale = (np.inf, max_long_edge)
     elif scale is not None:
         raise TypeError(
             f'Scale must be None, float or tuple of int, but got '
             f'{type(scale)}.')
     self.keys = keys
     self.output_keys = output_keys
     self.scale = scale
     self.size_factor = size_factor
     self.max_size = max_size
     self.keep_ratio = keep_ratio
     self.interpolation = interpolation
     self.backend = backend