コード例 #1
0
ファイル: ResNet.py プロジェクト: laexl/love-xyellow-lemon-
 def forward(self, source, target, s_label):
     source = self.feature_layers(source)
     if bottle_neck:
         source = self.bottle(source)
     s_pred = self.cls_fc(source)
     if self.training ==True:
         target = self.feature_layers(target)
         if bottle_neck:
             target = self.bottle(target)
         t_label = self.cls_fc(target)
         #原始的lmmd
         loss = mmd.lmmd(source, target, s_label, torch.nn.functional.softmax(t_label, dim=1),num_classes = self.num_classes)
         #混合核lmmd
         #loss = mklmmd.mix_poly_rbf(source, target, s_label, torch.nn.functional.softmax(t_label, dim=1))
     else:
         loss = 0
     return s_pred, loss
コード例 #2
0
 def forward(self, source, target, s_label):
     source = self.feature_layers(source)
     if bottle_neck:
         source = self.bottle(source)
     s_pred = self.cls_fc(source)
     if self.training == True:
         target = self.feature_layers(target)
         if bottle_neck:
             target = self.bottle(target)
         t_label = self.cls_fc(target)
         loss_c = mmd.lmmd(source, target, s_label,
                           torch.nn.functional.softmax(t_label, dim=1))
         loss_m = self.mmd_marginal(source, target)
         mu = proxy_a_distance.estimate_mu(
             source.detach().cpu().numpy(),
             s_label.detach().cpu().numpy(),
             target.detach().cpu().numpy(),
             torch.max(t_label, 1)[1].detach().cpu().numpy())
     else:
         loss_c, loss_m, mu = 0
     return s_pred, loss_c, loss_m, mu