コード例 #1
0
def fsaf_config():
    """FSAF Head Config."""
    cfg = dict(anchor_generator=dict(type='AnchorGenerator',
                                     octave_base_scale=1,
                                     scales_per_octave=1,
                                     ratios=[1.0],
                                     strides=[8, 16, 32, 64, 128]))

    test_cfg = mmcv.Config(
        dict(deploy_nms_pre=0,
             min_bbox_size=0,
             score_thr=0.05,
             nms=dict(type='nms', iou_threshold=0.5),
             max_per_img=100))

    model = FSAFHead(num_classes=4, in_channels=1, test_cfg=test_cfg, **cfg)
    model.requires_grad_(False)
    return model
コード例 #2
0
def test_fsaf_head_loss():
    """Tests anchor head loss when truth is empty and non-empty."""
    s = 256
    img_metas = [{
        'img_shape': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3)
    }]

    cfg = dict(reg_decoded_bbox=True,
               anchor_generator=dict(type='AnchorGenerator',
                                     octave_base_scale=1,
                                     scales_per_octave=1,
                                     ratios=[1.0],
                                     strides=[8, 16, 32, 64, 128]),
               bbox_coder=dict(type='TBLRBBoxCoder', normalizer=4.0),
               loss_cls=dict(type='FocalLoss',
                             use_sigmoid=True,
                             gamma=2.0,
                             alpha=0.25,
                             loss_weight=1.0,
                             reduction='none'),
               loss_bbox=dict(type='IoULoss',
                              eps=1e-6,
                              loss_weight=1.0,
                              reduction='none'))

    train_cfg = mmcv.Config(
        dict(assigner=dict(type='CenterRegionAssigner',
                           pos_scale=0.2,
                           neg_scale=0.2,
                           min_pos_iof=0.01),
             allowed_border=-1,
             pos_weight=-1,
             debug=False))
    head = FSAFHead(num_classes=4, in_channels=1, train_cfg=train_cfg, **cfg)
    if torch.cuda.is_available():
        head.cuda()
        # FSAF head expects a multiple levels of features per image
        feat = [
            torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).cuda()
            for i in range(len(head.anchor_generator.strides))
        ]
        cls_scores, bbox_preds = head.forward(feat)
        gt_bboxes_ignore = None

        # When truth is non-empty then both cls and box loss should be nonzero
        #  for random inputs
        gt_bboxes = [
            torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]).cuda(),
        ]
        gt_labels = [torch.LongTensor([2]).cuda()]
        one_gt_losses = head.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels,
                                  img_metas, gt_bboxes_ignore)
        onegt_cls_loss = sum(one_gt_losses['loss_cls'])
        onegt_box_loss = sum(one_gt_losses['loss_bbox'])
        assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
        assert onegt_box_loss.item() > 0, 'box loss should be non-zero'

        # Test that empty ground truth encourages the network to predict bkg
        gt_bboxes = [torch.empty((0, 4)).cuda()]
        gt_labels = [torch.LongTensor([]).cuda()]

        empty_gt_losses = head.loss(cls_scores, bbox_preds, gt_bboxes,
                                    gt_labels, img_metas, gt_bboxes_ignore)
        # When there is no truth, the cls loss should be nonzero but there
        # should be no box loss.
        empty_cls_loss = sum(empty_gt_losses['loss_cls'])
        empty_box_loss = sum(empty_gt_losses['loss_bbox'])
        assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
        assert empty_box_loss.item() == 0, (
            'there should be no box loss when there are no true boxes')