def fsaf_config(): """FSAF Head Config.""" cfg = dict(anchor_generator=dict(type='AnchorGenerator', octave_base_scale=1, scales_per_octave=1, ratios=[1.0], strides=[8, 16, 32, 64, 128])) test_cfg = mmcv.Config( dict(deploy_nms_pre=0, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) model = FSAFHead(num_classes=4, in_channels=1, test_cfg=test_cfg, **cfg) model.requires_grad_(False) return model
def test_fsaf_head_loss(): """Tests anchor head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] cfg = dict(reg_decoded_bbox=True, anchor_generator=dict(type='AnchorGenerator', octave_base_scale=1, scales_per_octave=1, ratios=[1.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict(type='TBLRBBoxCoder', normalizer=4.0), loss_cls=dict(type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0, reduction='none'), loss_bbox=dict(type='IoULoss', eps=1e-6, loss_weight=1.0, reduction='none')) train_cfg = mmcv.Config( dict(assigner=dict(type='CenterRegionAssigner', pos_scale=0.2, neg_scale=0.2, min_pos_iof=0.01), allowed_border=-1, pos_weight=-1, debug=False)) head = FSAFHead(num_classes=4, in_channels=1, train_cfg=train_cfg, **cfg) if torch.cuda.is_available(): head.cuda() # FSAF head expects a multiple levels of features per image feat = [ torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).cuda() for i in range(len(head.anchor_generator.strides)) ] cls_scores, bbox_preds = head.forward(feat) gt_bboxes_ignore = None # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]).cuda(), ] gt_labels = [torch.LongTensor([2]).cuda()] one_gt_losses = head.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' # Test that empty ground truth encourages the network to predict bkg gt_bboxes = [torch.empty((0, 4)).cuda()] gt_labels = [torch.LongTensor([]).cuda()] empty_gt_losses = head.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes')