コード例 #1
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 pts_fc=[],
                 contrast_criterion=None,
                 max_pts=4096,
                 lambda_contrast=0.1):
        super(FusionContrastV2, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)
        if contrast_criterion:
            self.contrast_criterion = builder.build_loss(contrast_criterion)
            self.max_pts = max_pts
            self.lambda_contrast = lambda_contrast

        fc_layers = []
        for i, (in_c, out_c) in enumerate(zip(pts_fc[:-1], pts_fc[1:])):
            fc_layers.append(nn.Linear(in_c, out_c))
            if i == len(pts_fc) - 2:
                break
            fc_layers.append(nn.ReLU(inplace=True))
        self.fc_layers = nn.Sequential(*fc_layers)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
コード例 #2
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 pts_fc=[]):
        super(FusionBaseline4, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        fc_layers = []
        for i, (in_c, out_c) in enumerate(zip(pts_fc[:-1], pts_fc[1:])):
            fc_layers.append(nn.Linear(in_c, out_c))
            if i == len(pts_fc) - 2:
                break
            fc_layers.append(nn.ReLU(inplace=True))
        self.fc_layers = nn.Sequential(*fc_layers)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
コード例 #3
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 vfes=[]):
        super(FusionBaseline, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        vfe_layers = []
        for in_c, out_c in zip(vfes[:-1], vfes[1:]):
            vfe_layers.append(VFELayer(in_c, out_c, max_out=False))
        self.vfe_layers = nn.Sequential(*vfe_layers)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
コード例 #4
0
def test_sparse_encoder():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    sparse_encoder_cfg = dict(
        type='SparseEncoder',
        in_channels=5,
        sparse_shape=[40, 1024, 1024],
        order=('conv', 'norm', 'act'),
        encoder_channels=((16, 16, 32), (32, 32, 64), (64, 64, 128), (128,
                                                                      128)),
        encoder_paddings=((1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1,
                                                                       1)),
        block_type='basicblock')

    sparse_encoder = build_middle_encoder(sparse_encoder_cfg).cuda()
    voxel_features = torch.rand([207842, 5]).cuda()
    coors = torch.randint(0, 4, [207842, 4]).cuda()

    ret = sparse_encoder(voxel_features, coors, 4)
    assert ret.shape == torch.Size([4, 256, 128, 128])
コード例 #5
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(MultiTaskSep, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)