def __init__(self, model_config, weightfile, yolo): super(DarknetParser, self).__init__() if not os.path.exists(model_config): raise ValueError( 'Darknet model config [{}] can not be found!'.format( model_config)) if weightfile: self.weight_loaded = True fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) self.buf = np.fromfile(fp, dtype=np.float32) print("weights buf size: {}".format(self.buf.size)) fp.close() if yolo == "1": self.start = 1 #yolov2 else: self.start = 0 #yolov3 resnet model = parse_cfg(model_config) self.dk_graph = DarknetGraph(model) self.dk_graph.build()
def __init__(self, model_config, weightfile): super(DarknetParser, self).__init__() if not os.path.exists(model_config): raise ValueError( 'Darknet model config [{}] can not be found!'.format( model_config)) # model = _cntk.Function.load(model) # print(model_config) if weightfile: # print(weight) self.weight_loaded = True # net_info = cfg2prototxt(model_config) # print(net_info) # save_prototxt(net_info , 'resnet50.prototxt', region=False) # net = caffe.Net('resnet50.prototxt', caffe.TEST) # params = net.params # print(params) fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) self.buf = np.fromfile(fp, dtype=np.float32) print(self.buf.size) fp.close() self.start = 1 model = parse_cfg(model_config) # print(model) self.dk_graph = DarknetGraph(model) self.dk_graph.build()
class DarknetParser(Parser): dtype_map = { 0: graph_pb2.DT_UNDEFINED, np.float32: graph_pb2.DT_FLOAT32, np.float64: graph_pb2.DT_FLOAT64, 3: graph_pb2.DT_INT32, 4: graph_pb2.DT_UINT8, 5: graph_pb2.DT_INT16, 6: graph_pb2.DT_INT8, 7: graph_pb2.DT_STRING, 9: graph_pb2.DT_INT64 } @property def src_graph(self): return self.dk_graph def __init__(self, model_config, weightfile, yolo): super(DarknetParser, self).__init__() if not os.path.exists(model_config): raise ValueError( 'Darknet model config [{}] can not be found!'.format( model_config)) if weightfile: self.weight_loaded = True fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) self.buf = np.fromfile(fp, dtype=np.float32) print("weights buf size: {}".format(self.buf.size)) fp.close() if yolo == "1": self.start = 1 #yolov2 else: self.start = 0 #yolov3 resnet model = parse_cfg(model_config) self.dk_graph = DarknetGraph(model) self.dk_graph.build() def gen_IR(self): # load weight by original order for layer in self.dk_graph.original_list: current_node = self.dk_graph.get_node(layer) node_type = current_node.type # print(node_type) if hasattr(self, "rename_" + node_type): func = getattr(self, "rename_" + node_type) func(current_node) else: self.rename_UNKNOWN(current_node) print("loaded weights buf size: {}".format(self.start)) @staticmethod def _copy_and_reop(source_node, IR_node, new_op=None): if new_op == None: new_op = source_node.type IR_node.name = source_node.name IR_node.op = new_op if '_output_shape' in source_node.layer['attr'].keys(): output_list = source_node.layer['attr']['_output_shape'] shape = graph_pb2.TensorShape() for dim in output_list: new_dim = shape.dim.add() if dim == None: new_dim.size = -1 else: new_dim.size = int(dim) IR_node.attr["_output_shape"].list.shape.extend([shape]) if 'shape' in source_node.layer['attr'].keys(): shape_list = source_node.layer['attr']['shape'] if not output_list == None: for dim in shape_list: new_dim = IR_node.attr["shape"].shape.dim.add() if dim == None: new_dim.size = -1 else: new_dim.size = int(dim) else: IR_node.attr["shape"].shape.unknown_rank = True def _convert_inedge(self, source_node, IR_node, start_idx=0, end_idx=None): if end_idx == None: end_idx = len(source_node.in_edges) for idx in range(start_idx, end_idx): IR_node.input.append( self.src_graph.get_node(source_node.in_edges[idx]).real_name) def _convert_identity_operation(self, source_node, start_idx=0, end_idx=None, new_op=None): IR_node = self.IR_graph.node.add() DarknetParser._copy_and_reop(source_node, IR_node, new_op) self._convert_inedge(source_node, IR_node, start_idx, end_idx) return IR_node def rename_UNKNOWN(self, source_node): print(source_node.layer) print("Darknet has not supported operator [%s] with name [%s]." % (source_node.type, source_node.name)) assert False def rename_DataInput(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='DataInput') # print(IR_node) # assert False def rename_Conv(self, source_node): """ weights: name_weights, name_bias """ IR_node = self._convert_identity_operation(source_node, new_op='Conv') kwargs = {} # strides stride = source_node.get_attr('stride') kwargs['strides'] = [1, stride, stride, 1] innode = self.dk_graph.get_node(source_node.in_edges[0]) input_shape = innode.get_attr('_output_shape') # assert False kwargs['kernel_shape'] = source_node.get_attr('kernel') # padding if source_node.get_attr('pad'): kwargs['auto_pad'] = "SAME" padding = source_node.get_attr('padding') kwargs['pads'] = [0, padding, padding, 0, 0, padding, padding, 0] else: kwargs['auto_pad'] = "VALID" # only load weight conv if source_node.get_attr('bias_term') == 'true': kwargs['use_bias'] = True kernel = kwargs['kernel_shape'] kernel = np.zeros([kernel[-1], kernel[-2], kernel[0], kernel[1]]) k_bias = np.zeros(kwargs['kernel_shape'][-1]) conv_name = source_node.name # print("----------------",self.start) # print(kernel.shape) # print(k_bias.shape) b = np.reshape(self.buf[self.start:self.start + k_bias.size], k_bias.shape) self.start = self.start + k_bias.size self.set_weight(conv_name, 'bias', b) W = np.reshape(self.buf[self.start:self.start + kernel.size], kernel.shape) self.start = self.start + kernel.size W = np.transpose(W, (2, 3, 1, 0)) self.set_weight(conv_name, 'weights', W) else: kwargs['use_bias'] = False assign_IRnode_values(IR_node, kwargs) def rename_BatchNorm(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='BatchNorm') kwargs = {} IR_node.attr['use_global_stats'].b = source_node.get_attr( 'use_global_stats') IR_node.attr['bias'].b = source_node.get_attr('use_global_stats') IR_node.attr['scale'].b = source_node.get_attr('use_global_stats') IR_node.attr['epsilon'].f = 1e-5 assign_IRnode_values(IR_node, kwargs) innode = self.dk_graph.get_node(source_node.in_edges[0]) input_shape = innode.get_attr('_output_shape') kernel = innode.get_attr('kernel') kernel = np.zeros([kernel[-1], kernel[-2], kernel[0], kernel[1]]) # buf, start, scale_layer['name'], bn_layer['name'], conv_layer['name'] # print("==============",self.start) bias = np.zeros(input_shape[-1]) scale = np.zeros(input_shape[-1]) mean = np.zeros(input_shape[-1]) var = np.zeros(input_shape[-1]) # print(bias.shape) # print(scale.shape) # print(mean.shape) # print(var.shape) # print(kernel.shape) bias_content = np.reshape(self.buf[self.start:self.start + bias.size], bias.shape) self.start = self.start + bias.size self.set_weight(source_node.name, 'bias', bias_content) scale_content = np.reshape( self.buf[self.start:self.start + scale.size], scale.shape) self.start = self.start + scale.size self.set_weight(source_node.name, 'scale', scale_content) mean_content = np.reshape(self.buf[self.start:self.start + mean.size], mean.shape) self.start = self.start + mean.size self.set_weight(source_node.name, 'mean', mean_content) var_content = np.reshape(self.buf[self.start:self.start + var.size], var.shape) self.start = self.start + var.size self.set_weight(source_node.name, 'var', var_content) W = np.reshape(self.buf[self.start:self.start + kernel.size], kernel.shape) self.start = self.start + kernel.size W = np.transpose(W, (2, 3, 1, 0)) # print(W) # assert False self.set_weight(innode.name, 'weights', W) # no use def rename_ReLU(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='Relu') def rename_leakyReLU(self, source_node): # print(source_node.layer) kwargs = {} kwargs['alpha'] = float(source_node.get_attr('negative_slope')) IR_node = self._convert_identity_operation(source_node, new_op='LeakyRelu') assign_IRnode_values(IR_node, kwargs) def rename_Pooling(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='Pool') kwargs = {} if source_node.get_attr('pool') == 'MAX': kernel = source_node.get_attr('kernel_size') kwargs['kernel_shape'] = [1, kernel, kernel, 1] stride = source_node.get_attr('stride') kwargs['strides'] = [1, stride, stride, 1] kwargs['pooling_type'] = source_node.get_attr('pool') pad = source_node.get_attr('padding') IR_node.attr["pads"].list.i.extend(([0] + [pad, pad] + [0]) * 2) # for image classification(resnet) AVG pooling else: print(source_node.layer) innode = self.dk_graph.get_node(source_node.in_edges[0]) input_shape = innode.get_attr('_output_shape') kwargs['kernel_shape'] = [1] + input_shape[1:2] + [1] kwargs['strides'] = [1, 1, 1, 1] kwargs['pooling_type'] = source_node.get_attr('pool') IR_node.attr["pads"].list.i.extend(([0, 0, 0, 0]) * 2) assign_IRnode_values(IR_node, kwargs) def rename_yolo(self, source_node): # print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='yolo') kwargs = {} kwargs['truth_thresh'] = source_node.get_attr('truth_thresh') kwargs['random'] = source_node.get_attr('random') kwargs['ignore_thresh'] = source_node.get_attr('ignore_thresh') kwargs['jitter'] = source_node.get_attr('jitter') kwargs['num'] = source_node.get_attr('num') kwargs['classes'] = source_node.get_attr('classes') kwargs['anchors'] = source_node.get_attr('anchors') kwargs['mask'] = source_node.get_attr('mask') assign_IRnode_values(IR_node, kwargs) def rename_Concat(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='Concat') IR_node.attr["axis"].i = int(source_node.get_attr("axis", "1")) def rename_upsample(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='upsample') stride = source_node.get_attr('strides') kwargs = {} kwargs['strides'] = stride assign_IRnode_values(IR_node, kwargs) def rename_Add(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='Add') def rename_SpaceToDepth(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='SpaceToDepth') stride = source_node.get_attr('strides') kwargs = {} kwargs['blocksize'] = stride assign_IRnode_values(IR_node, kwargs) def rename_InnerProduct(self, source_node): print(source_node.layer) assert False def rename_region(self, source_node): # print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='region') kwargs = {} kwargs['thresh'] = source_node.get_attr('thresh') kwargs['random'] = source_node.get_attr('random') # kwargs['ignore_thresh'] = source_node.get_attr('ignore_thresh') kwargs['jitter'] = source_node.get_attr('jitter') kwargs['num'] = source_node.get_attr('num') kwargs['classes'] = source_node.get_attr('classes') kwargs['softmax'] = source_node.get_attr('softmax') kwargs['coords'] = source_node.get_attr('coords') kwargs['rescore'] = source_node.get_attr('rescore') # print(source_node.get_attr('anchors')) kwargs['anchors'] = source_node.get_attr('anchors') # kwargs['anchors'] = ['0.52','0.22'] # kwargs['mask'] = source_node.get_attr('mask') kwargs['object_scale'] = source_node.get_attr('object_scale') kwargs['noobject_scale'] = source_node.get_attr('noobject_scale') kwargs['class_scale'] = source_node.get_attr('class_scale') kwargs['coord_scale'] = source_node.get_attr('coord_scale') kwargs['bias_match'] = source_node.get_attr('bias_match') kwargs['absolute'] = source_node.get_attr('absolute') assign_IRnode_values(IR_node, kwargs) def rename_Softmax(self, source_node): IR_node = self._convert_identity_operation(source_node)
class DarknetParser(Parser): dtype_map = { 0: graph_pb2.DT_UNDEFINED, np.float32: graph_pb2.DT_FLOAT32, np.float64: graph_pb2.DT_FLOAT64, 3: graph_pb2.DT_INT32, 4: graph_pb2.DT_UINT8, 5: graph_pb2.DT_INT16, 6: graph_pb2.DT_INT8, 7: graph_pb2.DT_STRING, 9: graph_pb2.DT_INT64 } @property def src_graph(self): return self.dk_graph @staticmethod def load_weights(self, model, weightfile): # def load_conv_bn() fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) buf = np.fromfile(fp, dtype=np.float32) fp.close() layer_id = 1 start = 0 self.set_weight('test', 'weights', np.array([1, 2, 3, 4, 5])) # print(self.layer_map['']) # for block in model: # print(block) # if start >= buf.size: # break # if block['type'] == 'net': # continue # elif block['type'] == 'convolutional': # batch_normalize = int(block['batch_normalize']) # print(batch_normalize) # # assert False # if block.has_key('name'): # conv_layer_name = block['name'] # bn_layer_name = '%s-bn' % block['name'] # scale_layer_name = '%s-scale' % block['name'] # else: # conv_layer_name = 'layer%d-conv' % layer_id # bn_layer_name = 'layer%d-bn' % layer_id # scale_layer_name = 'layer%d-scale' % layer_id # if batch_normalize: # print(start) # start = load_conv_bn(buf, start, ) # print(start) # assert False # else: # start = load_conv(buf, start, ) # layer_id = layer_id+1 # elif block['type'] == 'connected': # if block.has_key('name'): # fc_layer_name = block['name'] # else: # fc_layer_name = 'layer%d-fc' % layer_id # start = load_fc2caffe(buf, start, params[fc_layer_name]) # layer_id = layer_id+1 # elif block['type'] == 'maxpool': # layer_id = layer_id+1 # elif block['type'] == 'avgpool': # layer_id = layer_id+1 # elif block['type'] == 'region': # layer_id = layer_id + 1 # elif block['type'] == 'route': # layer_id = layer_id + 1 # elif block['type'] == 'shortcut': # layer_id = layer_id + 1 # elif block['type'] == 'softmax': # layer_id = layer_id + 1 # elif block['type'] == 'cost': # layer_id = layer_id + 1 # else: # print('unknow layer type %s ' % block['type']) # layer_id = layer_id + 1 def __init__(self, model_config, weightfile): super(DarknetParser, self).__init__() if not os.path.exists(model_config): raise ValueError( 'Darknet model config [{}] can not be found!'.format( model_config)) # model = _cntk.Function.load(model) # print(model_config) if weightfile: # print(weight) self.weight_loaded = True # net_info = cfg2prototxt(model_config) # print(net_info) # save_prototxt(net_info , 'resnet50.prototxt', region=False) # net = caffe.Net('resnet50.prototxt', caffe.TEST) # params = net.params # print(params) fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) self.buf = np.fromfile(fp, dtype=np.float32) print(self.buf.size) fp.close() self.start = 1 model = parse_cfg(model_config) # print(model) self.dk_graph = DarknetGraph(model) self.dk_graph.build() # print(self.dk_graph.get_node('layer87-concat')) # self.load_weights(self, model, weightfile) # print(self.weights) # assert False def gen_IR(self): # for layer in self.dk_graph.topological_sort: # for layer in self.dk_graph.layer_map: # load weight by original order for layer in self.dk_graph.original_list: # layer_map # print(layer) current_node = self.dk_graph.get_node(layer) node_type = current_node.type print(node_type) # print(current_node.layer) # continue if hasattr(self, "rename_" + node_type): func = getattr(self, "rename_" + node_type) func(current_node) else: self.rename_UNKNOWN(current_node) @staticmethod def _copy_and_reop(source_node, IR_node, new_op=None): if new_op == None: new_op = source_node.type IR_node.name = source_node.name IR_node.op = new_op # print(source_node.layer['attr'].keys()) # assert False if '_output_shape' in source_node.layer['attr'].keys(): # print("**********") output_list = source_node.layer['attr']['_output_shape'] shape = graph_pb2.TensorShape() for dim in output_list: new_dim = shape.dim.add() if dim == None: new_dim.size = -1 else: new_dim.size = dim IR_node.attr["_output_shape"].list.shape.extend([shape]) if 'shape' in source_node.layer['attr'].keys(): shape_list = source_node.layer['attr']['shape'] if not output_list == None: for dim in shape_list: new_dim = IR_node.attr["shape"].shape.dim.add() if dim == None: new_dim.size = -1 else: new_dim.size = dim else: IR_node.attr["shape"].shape.unknown_rank = True def _convert_inedge(self, source_node, IR_node, start_idx=0, end_idx=None): if end_idx == None: end_idx = len(source_node.in_edges) for idx in range(start_idx, end_idx): IR_node.input.append( self.src_graph.get_node(source_node.in_edges[idx]).real_name) def _convert_identity_operation(self, source_node, start_idx=0, end_idx=None, new_op=None): IR_node = self.IR_graph.node.add() DarknetParser._copy_and_reop(source_node, IR_node, new_op) self._convert_inedge(source_node, IR_node, start_idx, end_idx) return IR_node def rename_UNKNOWN(self, source_node): print(source_node.layer) # print(source_node.layer['attr']['shape']) # print(source_node.in_edges) print("Darknet has not supported operator [%s] with name [%s]." % (source_node.type, source_node.name)) assert False def rename_DataInput(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='DataInput') # print(IR_node) # assert False def rename_Conv(self, source_node): """ weights: name_weights, name_bias """ print(source_node.layer) print("//////////////", self.start) IR_node = self._convert_identity_operation(source_node, new_op='Conv') # print(IR_node) # assert False kwargs = {} # strides stride = source_node.get_attr('stride') kwargs['strides'] = [1, stride, stride, 1] innode = self.dk_graph.get_node(source_node.in_edges[0]) input_shape = innode.get_attr('_output_shape') # print(input_shape) # kernel = source_node.get_attr('kernel') # print("kkkkkkkkk", kernel) # # assert False # kwargs['kernel_shape'] = kernel[-2:] + [kernel[1]] + [kernel[0]] kwargs['kernel_shape'] = source_node.get_attr('kernel') # padding if source_node.get_attr('pad'): kwargs['auto_pad'] = "SAME" padding = source_node.get_attr('padding') kwargs['pads'] = [0, padding, padding, 0, 0, padding, padding, 0] else: kwargs['auto_pad'] = "VALID" # only load weight conv print("-------------------", source_node.get_attr('bias_term')) if source_node.get_attr('bias_term') == 'true': kwargs['use_bias'] = True print(kwargs['kernel_shape']) print(source_node.layer) kernel = kwargs['kernel_shape'] kernel = np.zeros([kernel[-1], kernel[-2], kernel[0], kernel[1]]) k_bias = np.zeros(kwargs['kernel_shape'][-1]) print(kernel.shape) print(k_bias.shape) conv_name = source_node.name print(conv_name) b = np.reshape(self.buf[self.start:self.start + k_bias.size], k_bias.shape) self.start = self.start + k_bias.size self.set_weight(conv_name, 'bias', b) W = np.reshape(self.buf[self.start:self.start + kernel.size], kernel.shape) self.start = self.start + kernel.size W = np.transpose(W, (2, 3, 1, 0)) self.set_weight(conv_name, 'weights', W) else: kwargs['use_bias'] = False assign_IRnode_values(IR_node, kwargs) # print(IR_node) # assert False # output[0] : B # self._get_bias(source_node, IR_node) def rename_BatchNorm(self, source_node): print("************", self.start) # print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='BatchNorm') kwargs = {} IR_node.attr['use_global_stats'].b = source_node.get_attr( 'use_global_stats') IR_node.attr['bias'].b = source_node.get_attr('use_global_stats') IR_node.attr['scale'].b = source_node.get_attr('use_global_stats') assign_IRnode_values(IR_node, kwargs) innode = self.dk_graph.get_node(source_node.in_edges[0]) input_shape = innode.get_attr('_output_shape') kernel = innode.get_attr('kernel') print(kernel) kernel = np.zeros([kernel[-1], kernel[-2], kernel[0], kernel[1]]) # print(input_shape) # print(kernel) # assert False # buf, start, scale_layer['name'], bn_layer['name'], conv_layer['name'] bias = np.zeros(input_shape[-1]) scale = np.zeros(input_shape[-1]) mean = np.zeros(input_shape[-1]) var = np.zeros(input_shape[-1]) # assert False # kernel = np.zeros(kernel) print(bias.shape) print(scale.shape) print(mean.shape) print(var.shape) print(kernel.shape) # assert False bias_content = np.reshape(self.buf[self.start:self.start + bias.size], bias.shape) self.start = self.start + bias.size self.set_weight(source_node.name, 'bias', bias_content) scale_content = np.reshape( self.buf[self.start:self.start + scale.size], scale.shape) self.start = self.start + scale.size self.set_weight(source_node.name, 'scale', scale_content) mean_content = np.reshape(self.buf[self.start:self.start + mean.size], mean.shape) self.start = self.start + mean.size self.set_weight(source_node.name, 'mean', mean_content) var_content = np.reshape(self.buf[self.start:self.start + var.size], var.shape) self.start = self.start + var.size self.set_weight(source_node.name, 'var', var_content) W = np.reshape(self.buf[self.start:self.start + kernel.size], kernel.shape) self.start = self.start + kernel.size W = np.transpose(W, (2, 3, 1, 0)) print(W.shape) # assert False self.set_weight(innode.name, 'weights', W) # print(IR_node) # assert False # no use def rename_ReLU(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='Relu') # print(IR_node) # assert False def rename_leakyReLU(self, source_node): # print(source_node.layer) kwargs = {} kwargs['alpha'] = float(source_node.get_attr('negative_slope')) IR_node = self._convert_identity_operation(source_node, new_op='LeakyRelu') assign_IRnode_values(IR_node, kwargs) # print(IR_node) # assert False def rename_Pooling(self, source_node): IR_node = self._convert_identity_operation(source_node, new_op='Pool') print(source_node.layer) kwargs = {} kernel = source_node.get_attr('kernel_size') kwargs['kernel_shape'] = [1, kernel, kernel, 1] stride = source_node.get_attr('stride') kwargs['strides'] = [1, stride, stride, 1] kwargs['pooling_type'] = source_node.get_attr('pool') pad = source_node.get_attr('padding') IR_node.attr["pads"].list.i.extend(([0] + [pad, pad] + [0]) * 2) assign_IRnode_values(IR_node, kwargs) # print(IR_node) # assert False def rename_yolo(self, source_node): print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='yolo') kwargs = {} kwargs['truth_thresh'] = source_node.get_attr('truth_thresh') kwargs['random'] = source_node.get_attr('random') kwargs['ignore_thresh'] = source_node.get_attr('ignore_thresh') kwargs['jitter'] = source_node.get_attr('jitter') kwargs['num'] = source_node.get_attr('num') kwargs['classes'] = source_node.get_attr('classes') kwargs['anchors'] = source_node.get_attr('anchors') kwargs['mask'] = source_node.get_attr('mask') assign_IRnode_values(IR_node, kwargs) # print(IR_node) # assert False # return def rename_Concat(self, source_node): # print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='Concat') IR_node.attr["axis"].i = int(source_node.get_attr("axis", "1")) # print(IR_node) # assert False # return def rename_upsample(self, source_node): # print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='upsample') stride = source_node.get_attr('strides') # print(stride) kwargs = {} kwargs['strides'] = stride assign_IRnode_values(IR_node, kwargs) # print(IR_node) # assert False def rename_Add(self, source_node): # print(source_node.layer) IR_node = self._convert_identity_operation(source_node, new_op='Add') # print(IR_node) # assert False def rename_InnerProduct(self, source_node): print(source_node.layer) assert False def rename_Softmax(self, source_node): print(source_node.layer) assert False