コード例 #1
0
    def _init_metrics(self, metric_list):
        metrics = {}
        self.required_params = set(["dataset_name", "dataset_type"])
        for metric in metric_list:
            params = {}
            if isinstance(metric, collections.abc.Mapping):
                if not hasattr(metric, "type"):
                    raise ValueError(
                        "Metric {} needs to have 'type' attribute".format(
                            metric))
                metric = metric.type
                params = getattr(metric, "params", {})
            else:
                if not isinstance(metric, str):
                    raise TypeError("Metric {} has inappropriate type"
                                    "'dict' or 'str' allowed".format(metric))

            metric_cls = registry.get_metric_class(metric)
            if metric_cls is None:
                raise ValueError(
                    "No metric named {} registered to registry".format(metric))
            metrics[metric] = metric_cls(**params)
            self.required_params.update(metrics[metric].required_params)

        return metrics
コード例 #2
0
    def _init_metrics(self, metric_list):
        metrics = {}
        self.required_params = {"dataset_name", "dataset_type"}
        for metric in metric_list:
            params = {}
            dataset_names = []
            if isinstance(metric, collections.abc.Mapping):
                if "type" not in metric:
                    raise ValueError(
                        f"Metric {metric} needs to have 'type' attribute "
                        + "or should be a string"
                    )
                metric_type = key = metric.type
                params = getattr(metric, "params", {})
                # Support cases where uses need to give custom metric name
                if "key" in metric:
                    key = metric.key

                # One key should only be used once
                if key in metrics:
                    raise RuntimeError(
                        f"Metric with type/key '{metric_type}' has been defined more "
                        + "than once in metric list."
                    )

                # a custom list of dataset where this metric will be applied
                if "datasets" in metric:
                    dataset_names = metric.datasets
            else:
                if not isinstance(metric, str):
                    raise TypeError(
                        "Metric {} has inappropriate type"
                        "'dict' or 'str' allowed".format(metric)
                    )
                metric_type = key = metric

            metric_cls = registry.get_metric_class(metric_type)
            if metric_cls is None:
                raise ValueError(
                    f"No metric named {metric_type} registered to registry"
                )

            metric_instance = metric_cls(**params)
            metric_instance.name = key
            metric_instance.set_applicable_datasets(dataset_names)

            metrics[key] = metric_instance
            self.required_params.update(metrics[key].required_params)

        return metrics