def __init__(self, config, trainer): """ Attr: config(mmf_typings.DictConfig): Config for the callback trainer(Type[BaseTrainer]): Trainer object """ super().__init__(config, trainer) self.total_timer = Timer() self.log_interval = self.training_config.log_interval self.evaluation_interval = self.training_config.evaluation_interval self.checkpoint_interval = self.training_config.checkpoint_interval # Total iterations for snapshot self.snapshot_iterations = len(self.trainer.val_dataset) self.snapshot_iterations //= self.training_config.batch_size self.tb_writer = None if self.training_config.tensorboard: log_dir = setup_output_folder(folder_only=True) env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir, self.trainer.current_iteration)
def load_extras(self): self.writer.write("Torch version is: " + torch.__version__) self.checkpoint = Checkpoint(self) self.meter = Meter() self.training_config = self.config.training early_stop_criteria = self.training_config.early_stop.criteria early_stop_minimize = self.training_config.early_stop.minimize early_stop_enabled = self.training_config.early_stop.enabled early_stop_patience = self.training_config.early_stop.patience self.log_interval = self.training_config.log_interval self.evaluation_interval = self.training_config.evaluation_interval self.checkpoint_interval = self.training_config.checkpoint_interval self.max_updates = self.training_config.max_updates self.should_clip_gradients = self.training_config.clip_gradients self.max_epochs = self.training_config.max_epochs self.early_stopping = EarlyStopping( self.model, self.checkpoint, early_stop_criteria, patience=early_stop_patience, minimize=early_stop_minimize, should_stop=early_stop_enabled, ) self.current_epoch = 0 self.current_iteration = 0 self.num_updates = 0 self.checkpoint.load_state_dict() self.not_debug = self.training_config.logger_level != "debug" self.lr_scheduler = None if self.training_config.lr_scheduler is True: self.lr_scheduler = build_scheduler(self.optimizer, self.config) self.tb_writer = None if self.training_config.tensorboard: log_dir = self.writer.log_dir env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir, self.current_iteration)
def _load_loggers(self) -> None: self.tb_writer = None if self.training_config.tensorboard: # TODO: @sash PL logger upgrade log_dir = setup_output_folder(folder_only=True) env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir)
def __init__(self, config, trainer): """ Attr: config(mmf_typings.DictConfig): Config for the callback trainer(Type[BaseTrainer]): Trainer object """ super().__init__(config, trainer) self.total_timer = Timer() self.log_interval = self.training_config.log_interval self.evaluation_interval = self.training_config.evaluation_interval self.checkpoint_interval = self.training_config.checkpoint_interval # Total iterations for snapshot # len would be number of batches per GPU == max updates self.snapshot_iterations = len(self.trainer.val_loader) self.tb_writer = None self.wandb_logger = None if self.training_config.tensorboard: log_dir = setup_output_folder(folder_only=True) env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir, self.trainer.current_iteration) if self.training_config.wandb.enabled: log_dir = setup_output_folder(folder_only=True) env_wandb_logdir = get_mmf_env(key="wandb_logdir") if env_wandb_logdir: log_dir = env_wandb_logdir self.wandb_logger = WandbLogger( entity=config.training.wandb.entity, config=config, project=config.training.wandb.project, )
class LogisticsCallback(Callback): """Callback for handling train/validation logistics, report summarization, logging etc. """ def __init__(self, config, trainer): """ Attr: config(mmf_typings.DictConfig): Config for the callback trainer(Type[BaseTrainer]): Trainer object """ super().__init__(config, trainer) self.total_timer = Timer() self.log_interval = self.training_config.log_interval self.evaluation_interval = self.training_config.evaluation_interval self.checkpoint_interval = self.training_config.checkpoint_interval # Total iterations for snapshot self.snapshot_iterations = len(self.trainer.val_dataset) self.snapshot_iterations //= self.training_config.batch_size self.tb_writer = None if self.training_config.tensorboard: log_dir = setup_output_folder(folder_only=True) env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir, self.trainer.current_iteration) def on_train_start(self): self.train_timer = Timer() self.snapshot_timer = Timer() def on_update_end(self, **kwargs): if not kwargs["should_log"]: return extra = {} if "cuda" in str(self.trainer.device): extra["max mem"] = torch.cuda.max_memory_allocated() / 1024 extra["max mem"] //= 1024 if self.training_config.experiment_name: extra["experiment"] = self.training_config.experiment_name extra.update( { "epoch": self.trainer.current_epoch, "num_updates": self.trainer.num_updates, "iterations": self.trainer.current_iteration, "max_updates": self.trainer.max_updates, "lr": "{:.5f}".format( self.trainer.optimizer.param_groups[0]["lr"] ).rstrip("0"), "ups": "{:.2f}".format( self.log_interval / self.train_timer.unix_time_since_start() ), "time": self.train_timer.get_time_since_start(), "time_since_start": self.total_timer.get_time_since_start(), "eta": self._calculate_time_left(), } ) self.train_timer.reset() self._summarize_report(kwargs["meter"], extra=extra) def on_validation_start(self, **kwargs): self.snapshot_timer.reset() def on_validation_end(self, **kwargs): extra = { "num_updates": self.trainer.num_updates, "epoch": self.trainer.current_epoch, "iterations": self.trainer.current_iteration, "max_updates": self.trainer.max_updates, "val_time": self.snapshot_timer.get_time_since_start(), } extra.update(self.trainer.early_stop_callback.early_stopping.get_info()) self.train_timer.reset() self._summarize_report(kwargs["meter"], extra=extra) def on_test_end(self, **kwargs): prefix = "{}: full {}".format( kwargs["report"].dataset_name, kwargs["report"].dataset_type ) self._summarize_report(kwargs["meter"], prefix) logger.info(f"Finished run in {self.total_timer.get_time_since_start()}") def _summarize_report(self, meter, should_print=True, extra=None): if extra is None: extra = {} if not is_master() and not is_xla(): return if self.training_config.tensorboard: scalar_dict = meter.get_scalar_dict() self.tb_writer.add_scalars(scalar_dict, self.trainer.current_iteration) if not should_print: return log_dict = {} if hasattr(self.trainer, "num_updates") and hasattr( self.trainer, "max_updates" ): log_dict.update( {"progress": f"{self.trainer.num_updates}/{self.trainer.max_updates}"} ) log_dict.update(meter.get_log_dict()) log_dict.update(extra) log_progress(log_dict) def _calculate_time_left(self): time_taken_for_log = time.time() * 1000 - self.train_timer.start iterations_left = self.trainer.max_updates - self.trainer.num_updates num_logs_left = iterations_left / self.log_interval time_left = num_logs_left * time_taken_for_log snapshot_iteration = self.snapshot_iterations / self.log_interval snapshot_iteration *= iterations_left / self.evaluation_interval time_left += snapshot_iteration * time_taken_for_log return self.train_timer.get_time_hhmmss(gap=time_left)
class BaseTrainer: def __init__(self, configuration): self.configuration = configuration self.config = self.configuration.get_config() self.profiler = Timer() self.total_timer = Timer() if self.configuration is not None: self.args = self.configuration.args def load(self): self._set_device() self.run_type = self.config.get("run_type", "train") self.dataset_loader = DatasetLoader(self.config) self._datasets = self.config.datasets # Check if loader is already defined, else init it writer = registry.get("writer", no_warning=True) if writer: self.writer = writer else: self.writer = Logger(self.config) registry.register("writer", self.writer) self.configuration.pretty_print() self.config_based_setup() self.load_datasets() self.load_model_and_optimizer() self.load_metrics() def _set_device(self): self.local_rank = self.config.device_id self.device = self.local_rank self.distributed = False # Will be updated later based on distributed setup registry.register("global_device", self.device) if self.config.distributed.init_method is not None: self.distributed = True self.device = torch.device("cuda", self.local_rank) elif torch.cuda.is_available(): self.device = torch.device("cuda") else: self.device = torch.device("cpu") registry.register("current_device", self.device) def load_datasets(self): self.writer.write("Loading datasets", "info") self.dataset_loader.load_datasets() self.train_dataset = self.dataset_loader.train_dataset self.val_dataset = self.dataset_loader.val_dataset # Total iterations for snapshot self.snapshot_iterations = len(self.val_dataset) self.snapshot_iterations //= self.config.training.batch_size self.test_dataset = self.dataset_loader.test_dataset self.train_loader = self.dataset_loader.train_loader self.val_loader = self.dataset_loader.val_loader self.test_loader = self.dataset_loader.test_loader def load_metrics(self): metrics = self.config.evaluation.get("metrics", []) self.metrics = Metrics(metrics) self.metrics_params = self.metrics.required_params def load_model_and_optimizer(self): attributes = self.config.model_config[self.config.model] # Easy way to point to config for other model if isinstance(attributes, str): attributes = self.config.model_config[attributes] with omegaconf.open_dict(attributes): attributes.model = self.config.model self.model = build_model(attributes) if "cuda" in str(self.device): device_info = "CUDA Device {} is: {}".format( self.config.distributed.rank, torch.cuda.get_device_name(self.local_rank), ) registry.register("global_device", self.config.distributed.rank) self.writer.write(device_info, log_all=True) self.model = self.model.to(self.device) self.optimizer = build_optimizer(self.model, self.config) registry.register("data_parallel", False) registry.register("distributed", False) self.load_extras() self.parallelize_model() def parallelize_model(self): training = self.config.training if ("cuda" in str(self.device) and torch.cuda.device_count() > 1 and not self.distributed): registry.register("data_parallel", True) self.model = torch.nn.DataParallel(self.model) if "cuda" in str(self.device) and self.distributed: registry.register("distributed", True) self.model = torch.nn.parallel.DistributedDataParallel( self.model, device_ids=[self.local_rank], output_device=self.local_rank, check_reduction=True, find_unused_parameters=training.find_unused_parameters, ) def load_extras(self): self.writer.write("Torch version is: " + torch.__version__) self.checkpoint = Checkpoint(self) self.meter = Meter() self.training_config = self.config.training early_stop_criteria = self.training_config.early_stop.criteria early_stop_minimize = self.training_config.early_stop.minimize early_stop_enabled = self.training_config.early_stop.enabled early_stop_patience = self.training_config.early_stop.patience self.log_interval = self.training_config.log_interval self.evaluation_interval = self.training_config.evaluation_interval self.checkpoint_interval = self.training_config.checkpoint_interval self.max_updates = self.training_config.max_updates self.should_clip_gradients = self.training_config.clip_gradients self.max_epochs = self.training_config.max_epochs self.early_stopping = EarlyStopping( self.model, self.checkpoint, early_stop_criteria, patience=early_stop_patience, minimize=early_stop_minimize, should_stop=early_stop_enabled, ) self.current_epoch = 0 self.current_iteration = 0 self.num_updates = 0 self.checkpoint.load_state_dict() self.not_debug = self.training_config.logger_level != "debug" self.lr_scheduler = None if self.training_config.lr_scheduler is True: self.lr_scheduler = build_scheduler(self.optimizer, self.config) self.tb_writer = None if self.training_config.tensorboard: log_dir = self.writer.log_dir env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir, self.current_iteration) def config_based_setup(self): seed = self.config.training.seed if seed is None: return torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def train(self): self.writer.write("===== Model =====") self.writer.write(self.model) print_model_parameters(self.model) if "train" not in self.run_type: self.inference() return should_break = False if self.max_epochs is None: self.max_epochs = math.inf else: self.max_updates = math.inf self.model.train() self.train_timer = Timer() self.snapshot_timer = Timer() self.profile("Setup Time") torch.autograd.set_detect_anomaly(True) self.writer.write("Starting training...") while self.num_updates < self.max_updates and not should_break: self.current_epoch += 1 registry.register("current_epoch", self.current_epoch) # Seed the sampler in case if it is distributed self.dataset_loader.seed_sampler("train", self.current_epoch) if self.current_epoch > self.max_epochs: break for batch in self.train_loader: self.profile("Batch load time") self.current_iteration += 1 self.writer.write(self.num_updates + 1, "debug") report = self._forward_pass(batch) loss = self._extract_loss(report) self._backward(loss) should_break = self._logistics(report) if self.num_updates > self.max_updates: should_break = True if should_break: break # In distributed, each worker will complete one epoch when we reach this # as each worker is an individual instance self.current_epoch += get_world_size() - 1 self.finalize() def _run_scheduler(self): if self.lr_scheduler is not None: self.lr_scheduler.step(self.num_updates) def _forward_pass(self, batch): prepared_batch = self.dataset_loader.prepare_batch(batch) self.profile("Batch prepare time") # Arguments should be a dict at this point model_output = self.model(prepared_batch) report = Report(prepared_batch, model_output) self.profile("Forward time") return report def _backward(self, loss): self.optimizer.zero_grad() loss.backward() if self.should_clip_gradients: clip_gradients(self.model, self.num_updates, self.tb_writer, self.config) self.optimizer.step() self._run_scheduler() self.num_updates += 1 self.profile("Backward time") def _extract_loss(self, report): loss_dict = report.losses loss = sum([loss.mean() for loss in loss_dict.values()]) return loss def finalize(self): self.writer.write("Stepping into final validation check") # Only do when run_type has train as it shouldn't happen on validation and # inference runs. Inference will take care of this anyways. Also, don't run # if current iteration is divisble by snapshot interval as it will just # be a repeat if ("train" in self.run_type and self.num_updates % self.evaluation_interval != 0): self._try_full_validation(force=True) self.checkpoint.restore() self.checkpoint.finalize() self.inference() self.writer.write( f"Finished run in {self.total_timer.get_time_since_start()}") def _update_meter(self, report, meter=None, eval_mode=False): if meter is None: meter = self.meter if hasattr(report, "metrics"): metrics_dict = report.metrics reduced_metrics_dict = reduce_dict(metrics_dict) if not eval_mode: loss_dict = report.losses reduced_loss_dict = reduce_dict(loss_dict) with torch.no_grad(): # Add metrics to meter only when mode is `eval` meter_update_dict = {} if not eval_mode: loss_key = report.dataset_type + "/total_loss" reduced_loss = sum( [loss.mean() for loss in reduced_loss_dict.values()]) if hasattr(reduced_loss, "item"): reduced_loss = reduced_loss.item() registry.register(loss_key, reduced_loss) meter_update_dict.update({loss_key: reduced_loss}) meter_update_dict.update(reduced_loss_dict) if hasattr(report, "metrics"): meter_update_dict.update(reduced_metrics_dict) meter.update(meter_update_dict, report.batch_size) def _logistics(self, report): registry.register("current_iteration", self.current_iteration) registry.register("num_updates", self.num_updates) should_print = self.num_updates % self.log_interval == 0 should_break = False extra = {} if should_print is True: if "cuda" in str(self.device): extra["max mem"] = torch.cuda.max_memory_allocated() / 1024 extra["max mem"] //= 1024 if self.training_config.experiment_name: extra["experiment"] = self.training_config.experiment_name extra.update({ "epoch": self.current_epoch, "num_updates": self.num_updates, "iterations": self.current_iteration, "max_updates": self.max_updates, "lr": "{:.5f}".format( self.optimizer.param_groups[0]["lr"]).rstrip("0"), "ups": "{:.2f}".format(self.log_interval / self.train_timer.unix_time_since_start()), "time": self.train_timer.get_time_since_start(), "time_since_start": self.total_timer.get_time_since_start(), "eta": self._calculate_time_left(), }) self.train_timer.reset() # Calculate metrics every log interval for debugging if self.training_config.evaluate_metrics: report.metrics = self.metrics(report, report) self._update_meter(report, self.meter) self._summarize_report(self.meter, should_print=should_print, extra=extra) self._try_snapshot() should_break = self._try_full_validation() return should_break def _try_snapshot(self): if self.num_updates % self.checkpoint_interval == 0: self.writer.write("Checkpoint time. Saving a checkpoint.") self.checkpoint.save(self.num_updates, self.current_iteration, update_best=False) def _try_full_validation(self, force=False): should_break = False if self.num_updates % self.evaluation_interval == 0 or force: self.snapshot_timer.reset() self.writer.write( "Evaluation time. Running on full validation set...") # Validation and Early stopping # Create a new meter for this case report, meter = self.evaluate(self.val_loader) extra = { "num_updates": self.num_updates, "epoch": self.current_epoch, "iterations": self.current_iteration, "max_updates": self.max_updates, "val_time": self.snapshot_timer.get_time_since_start(), } stop = self.early_stopping(self.num_updates, self.current_iteration, meter) stop = bool(broadcast_scalar(stop, src=0, device=self.device)) extra.update(self.early_stopping.get_info()) self._summarize_report(meter, extra=extra) gc.collect() if "cuda" in str(self.device): torch.cuda.empty_cache() if stop is True: self.writer.write("Early stopping activated") should_break = True self.train_timer.reset() return should_break def evaluate(self, loader, use_tqdm=False, single_batch=False): meter = Meter() with torch.no_grad(): self.model.eval() disable_tqdm = not use_tqdm or not is_master() combined_report = None for batch in tqdm(loader, disable=disable_tqdm): report = self._forward_pass(batch) self._update_meter(report, meter) # accumulate necessary params for metric calculation if combined_report is None: combined_report = report else: combined_report.accumulate_tensor_fields( report, self.metrics.required_params) combined_report.batch_size += report.batch_size if single_batch is True: break combined_report.metrics = self.metrics(combined_report, combined_report) self._update_meter(combined_report, meter, eval_mode=True) self.model.train() return combined_report, meter def _summarize_report(self, meter, should_print=True, extra=None): if extra is None: extra = {} if not is_master(): return if self.training_config.tensorboard: scalar_dict = meter.get_scalar_dict() self.tb_writer.add_scalars(scalar_dict, self.current_iteration) if not should_print: return log_dict = {"progress": f"{self.num_updates}/{self.max_updates}"} log_dict.update(meter.get_log_dict()) log_dict.update(extra) self.writer.log_progress(log_dict) def inference(self): if "val" in self.run_type: self._inference_run("val") if any(rt in self.run_type for rt in ["inference", "test", "predict"]): self._inference_run("test") def _inference_run(self, dataset_type): if self.config.evaluation.predict: self.predict(dataset_type) return self.writer.write(f"Starting inference on {dataset_type} set") report, meter = self.evaluate(getattr(self, f"{dataset_type}_loader"), use_tqdm=True) prefix = f"{report.dataset_name}: full {dataset_type}" self._summarize_report(meter, prefix) def _calculate_time_left(self): time_taken_for_log = time.time() * 1000 - self.train_timer.start iterations_left = self.max_updates - self.num_updates num_logs_left = iterations_left / self.log_interval time_left = num_logs_left * time_taken_for_log snapshot_iteration = self.snapshot_iterations / self.log_interval snapshot_iteration *= iterations_left / self.evaluation_interval time_left += snapshot_iteration * time_taken_for_log return self.train_timer.get_time_hhmmss(gap=time_left) def profile(self, text): if self.not_debug: return self.writer.write(text + ": " + self.profiler.get_time_since_start(), "debug") self.profiler.reset() def predict(self, dataset_type): reporter = self.dataset_loader.get_test_reporter(dataset_type) with torch.no_grad(): self.model.eval() message = f"Starting {dataset_type} inference predictions" self.writer.write(message) while reporter.next_dataset(): dataloader = reporter.get_dataloader() for batch in tqdm(dataloader): prepared_batch = reporter.prepare_batch(batch) model_output = self.model(prepared_batch) report = Report(prepared_batch, model_output) reporter.add_to_report(report, self.model) self.writer.write("Finished predicting") self.model.train()
class LogisticsCallback(Callback): """Callback for handling train/validation logistics, report summarization, logging etc. """ def __init__(self, config, trainer): """ Attr: config(mmf_typings.DictConfig): Config for the callback trainer(Type[BaseTrainer]): Trainer object """ super().__init__(config, trainer) self.total_timer = Timer() self.log_interval = self.training_config.log_interval self.evaluation_interval = self.training_config.evaluation_interval self.checkpoint_interval = self.training_config.checkpoint_interval # Total iterations for snapshot # len would be number of batches per GPU == max updates self.snapshot_iterations = len(self.trainer.val_loader) self.tb_writer = None self.wandb_logger = None if self.training_config.tensorboard: log_dir = setup_output_folder(folder_only=True) env_tb_logdir = get_mmf_env(key="tensorboard_logdir") if env_tb_logdir: log_dir = env_tb_logdir self.tb_writer = TensorboardLogger(log_dir, self.trainer.current_iteration) if self.training_config.wandb.enabled: log_dir = setup_output_folder(folder_only=True) env_wandb_logdir = get_mmf_env(key="wandb_logdir") if env_wandb_logdir: log_dir = env_wandb_logdir self.wandb_logger = WandbLogger( entity=config.training.wandb.entity, config=config, project=config.training.wandb.project, ) def on_train_start(self): self.train_timer = Timer() self.snapshot_timer = Timer() def on_update_end(self, **kwargs): if not kwargs["should_log"]: return extra = {} if "cuda" in str(self.trainer.device): extra["max mem"] = torch.cuda.max_memory_allocated() / 1024 extra["max mem"] //= 1024 if self.training_config.experiment_name: extra["experiment"] = self.training_config.experiment_name max_updates = getattr(self.trainer, "max_updates", None) num_updates = getattr(self.trainer, "num_updates", None) extra.update( { "epoch": self.trainer.current_epoch, "num_updates": num_updates, "iterations": self.trainer.current_iteration, "max_updates": max_updates, "lr": "{:.5f}".format( self.trainer.optimizer.param_groups[0]["lr"] ).rstrip("0"), "ups": "{:.2f}".format( self.log_interval / self.train_timer.unix_time_since_start() ), "time": self.train_timer.get_time_since_start(), "time_since_start": self.total_timer.get_time_since_start(), "eta": calculate_time_left( max_updates=max_updates, num_updates=num_updates, timer=self.train_timer, num_snapshot_iterations=self.snapshot_iterations, log_interval=self.log_interval, eval_interval=self.evaluation_interval, ), } ) self.train_timer.reset() summarize_report( current_iteration=self.trainer.current_iteration, num_updates=num_updates, max_updates=max_updates, meter=kwargs["meter"], extra=extra, tb_writer=self.tb_writer, wandb_logger=self.wandb_logger, ) def on_validation_start(self, **kwargs): self.snapshot_timer.reset() def on_validation_end(self, **kwargs): max_updates = getattr(self.trainer, "max_updates", None) num_updates = getattr(self.trainer, "num_updates", None) extra = { "num_updates": num_updates, "epoch": self.trainer.current_epoch, "iterations": self.trainer.current_iteration, "max_updates": max_updates, "val_time": self.snapshot_timer.get_time_since_start(), } extra.update(self.trainer.early_stop_callback.early_stopping.get_info()) self.train_timer.reset() summarize_report( current_iteration=self.trainer.current_iteration, num_updates=num_updates, max_updates=max_updates, meter=kwargs["meter"], extra=extra, tb_writer=self.tb_writer, wandb_logger=self.wandb_logger, ) def on_test_end(self, **kwargs): prefix = "{}: full {}".format( kwargs["report"].dataset_name, kwargs["report"].dataset_type ) summarize_report( current_iteration=self.trainer.current_iteration, num_updates=getattr(self.trainer, "num_updates", None), max_updates=getattr(self.trainer, "max_updates", None), meter=kwargs["meter"], should_print=prefix, tb_writer=self.tb_writer, wandb_logger=self.wandb_logger, ) logger.info(f"Finished run in {self.total_timer.get_time_since_start()}") def teardown(self): if self.tb_writer is not None: self.tb_writer.close()