コード例 #1
0
def test_interhand3d_demo():
    # H36M demo
    pose_model = init_pose_model(
        'configs/hand/3d_kpt_sview_rgb_img/internet/interhand3d/'
        'res50_interhand3d_all_256x256.py',
        None,
        device='cpu')

    image_name = 'tests/data/interhand2.6m/image2017.jpg'
    det_result = {
        'image_name': image_name,
        'bbox': [50, 50, 50, 50],  # bbox format is 'xywh'
        'camera_param': None,
        'keypoints_3d_gt': None
    }
    det_results = [det_result]
    dataset = pose_model.cfg.data['test']['type']
    dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])

    pose_results = inference_interhand_3d_model(pose_model,
                                                image_name,
                                                det_results,
                                                dataset=dataset)

    for res in pose_results:
        res['title'] = 'title'

    vis_3d_pose_result(
        pose_model,
        result=pose_results,
        img=det_results[0]['image_name'],
        dataset_info=dataset_info,
    )

    # test special cases
    # Empty det results
    _ = inference_interhand_3d_model(pose_model,
                                     image_name, [],
                                     dataset=dataset)

    if torch.cuda.is_available():
        _ = inference_interhand_3d_model(pose_model.cuda(),
                                         image_name,
                                         det_results,
                                         dataset=dataset)

    with pytest.raises(NotImplementedError):
        _ = inference_interhand_3d_model(pose_model,
                                         image_name,
                                         det_results,
                                         dataset='test')
コード例 #2
0
ファイル: test_inference_3d.py プロジェクト: rubeea/pl_mmpose
def test_pose_lifter_demo():
    # H36M demo
    pose_model = init_pose_model(
        'configs/body/3d_kpt_sview_rgb_img/pose_lift/'
        'h36m/simplebaseline3d_h36m.py',
        None,
        device='cpu')

    pose_det_result = {
        'keypoints': np.zeros((17, 3)),
        'bbox': [50, 50, 50, 50],
        'track_id': 0,
        'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
    }

    pose_results_2d = [[pose_det_result]]

    dataset = pose_model.cfg.data['test']['type']

    _ = inference_pose_lifter_model(
        pose_model, pose_results_2d, dataset, with_track_id=False)

    pose_lift_results = inference_pose_lifter_model(
        pose_model, pose_results_2d, dataset, with_track_id=True)

    for res in pose_lift_results:
        res['title'] = 'title'
    vis_3d_pose_result(
        pose_model,
        pose_lift_results,
        img=pose_lift_results[0]['image_name'],
        dataset=dataset)

    # test special cases
    # Empty 2D results
    _ = inference_pose_lifter_model(
        pose_model, [[]], dataset, with_track_id=False)

    if torch.cuda.is_available():
        _ = inference_pose_lifter_model(
            pose_model.cuda(), pose_results_2d, dataset, with_track_id=False)

    with pytest.raises(NotImplementedError):
        _ = inference_pose_lifter_model(
            pose_model, pose_results_2d, dataset='test')
コード例 #3
0
def test_pose_lifter_demo():
    # H36M demo
    pose_model = init_pose_model(
        'configs/body/3d_kpt_sview_rgb_img/pose_lift/'
        'h36m/simplebaseline3d_h36m.py',
        None,
        device='cpu')

    pose_det_result = {
        'keypoints': np.zeros((17, 3)),
        'bbox': [50, 50, 50, 50],
        'track_id': 0,
        'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
    }

    pose_results_2d = [[pose_det_result]]

    dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])

    pose_results_2d = extract_pose_sequence(pose_results_2d,
                                            frame_idx=0,
                                            causal=False,
                                            seq_len=1,
                                            step=1)

    _ = inference_pose_lifter_model(pose_model,
                                    pose_results_2d,
                                    dataset_info=dataset_info,
                                    with_track_id=False)

    pose_lift_results = inference_pose_lifter_model(pose_model,
                                                    pose_results_2d,
                                                    dataset_info=dataset_info,
                                                    with_track_id=True)

    for res in pose_lift_results:
        res['title'] = 'title'
    vis_3d_pose_result(pose_model,
                       pose_lift_results,
                       img=pose_results_2d[0][0]['image_name'],
                       dataset_info=dataset_info)

    # test special cases
    # Empty 2D results
    _ = inference_pose_lifter_model(pose_model, [[]],
                                    dataset_info=dataset_info,
                                    with_track_id=False)

    if torch.cuda.is_available():
        _ = inference_pose_lifter_model(pose_model.cuda(),
                                        pose_results_2d,
                                        dataset_info=dataset_info,
                                        with_track_id=False)

    # test videopose3d
    pose_model = init_pose_model(
        'configs/body/3d_kpt_sview_rgb_vid/video_pose_lift/h36m/'
        'videopose3d_h36m_243frames_fullconv_supervised_cpn_ft.py',
        None,
        device='cpu')

    pose_det_result_0 = {
        'keypoints': np.ones((17, 3)),
        'bbox': [50, 50, 100, 100],
        'track_id': 0,
        'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
    }
    pose_det_result_1 = {
        'keypoints': np.ones((17, 3)),
        'bbox': [50, 50, 100, 100],
        'track_id': 1,
        'image_name': 'tests/data/h36m/S5_SittingDown.54138969_002061.jpg',
    }
    pose_det_result_2 = {
        'keypoints': np.ones((17, 3)),
        'bbox': [50, 50, 100, 100],
        'track_id': 2,
        'image_name': 'tests/data/h36m/S7_Greeting.55011271_000396.jpg',
    }

    pose_results_2d = [[pose_det_result_0], [pose_det_result_1],
                       [pose_det_result_2]]

    dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])

    seq_len = pose_model.cfg.test_data_cfg.seq_len
    pose_results_2d_seq = extract_pose_sequence(pose_results_2d,
                                                1,
                                                causal=False,
                                                seq_len=seq_len,
                                                step=1)

    pose_lift_results = inference_pose_lifter_model(pose_model,
                                                    pose_results_2d_seq,
                                                    dataset_info=dataset_info,
                                                    with_track_id=True,
                                                    image_size=[1000, 1000],
                                                    norm_pose_2d=True)

    for res in pose_lift_results:
        res['title'] = 'title'
    vis_3d_pose_result(
        pose_model,
        pose_lift_results,
        img=pose_results_2d[0][0]['image_name'],
        dataset_info=dataset_info,
    )
コード例 #4
0
def main():
    parser = ArgumentParser()
    parser.add_argument('pose_lifter_config',
                        help='Config file for the 2nd stage pose lifter model')
    parser.add_argument(
        'pose_lifter_checkpoint',
        help='Checkpoint file for the 2nd stage pose lifter model')
    parser.add_argument('--pose-detector-conifig',
                        type=str,
                        default=None,
                        help='Config file for the 1st stage 2D pose detector')
    parser.add_argument(
        '--pose-detector-checkpoint',
        type=str,
        default=None,
        help='Checkpoint file for the 1st stage 2D pose detector')
    parser.add_argument('--img-root', type=str, default='', help='Image root')
    parser.add_argument(
        '--json-file',
        type=str,
        default=None,
        help='Json file containing image and bbox inforamtion. Optionally,'
        'The Jons file can also contain 2D pose information. See'
        '"only-second-stage"')
    parser.add_argument(
        '--camera-param-file',
        type=str,
        default=None,
        help='Camera parameter file for converting 3D pose predictions from '
        ' the camera space to to world space. If None, no conversion will be '
        'applied.')
    parser.add_argument(
        '--only-second-stage',
        action='store_true',
        help='If true, load 2D pose detection result from the Json file and '
        'skip the 1st stage. The pose detection model will be ignored.')
    parser.add_argument(
        '--rebase-keypoint-height',
        action='store_true',
        help='Rebase the predicted 3D pose so its lowest keypoint has a '
        'height of 0 (landing on the ground). This is useful for '
        'visualization when the model do not predict the global position '
        'of the 3D pose.')
    parser.add_argument(
        '--show-ground-truth',
        action='store_true',
        help='If True, show ground truth if it is available. The ground truth '
        'should be contained in the annotations in the Json file with the key '
        '"keypoints_3d" for each instance.')
    parser.add_argument('--show',
                        action='store_true',
                        default=False,
                        help='whether to show img')
    parser.add_argument('--out-img-root',
                        type=str,
                        default=None,
                        help='Root of the output visualization images. '
                        'Default not saving the visualization images.')
    parser.add_argument('--device',
                        default='cuda:0',
                        help='Device for inference')
    parser.add_argument('--kpt-thr', type=float, default=0.3)
    parser.add_argument('--radius',
                        type=int,
                        default=4,
                        help='Keypoint radius for visualization')
    parser.add_argument('--thickness',
                        type=int,
                        default=1,
                        help='Link thickness for visualization')

    args = parser.parse_args()
    assert args.show or (args.out_img_root != '')

    coco = COCO(args.json_file)

    # First stage: 2D pose detection
    pose_det_results_list = []
    if args.only_second_stage:
        from mmpose.apis.inference import _xywh2xyxy

        print('Stage 1: load 2D pose results from Json file.')
        for image_id, image in coco.imgs.items():
            image_name = osp.join(args.img_root, image['file_name'])
            ann_ids = coco.getAnnIds(image_id)
            pose_det_results = []
            for ann_id in ann_ids:
                ann = coco.anns[ann_id]
                keypoints = np.array(ann['keypoints']).reshape(-1, 3)
                keypoints[..., 2] = keypoints[..., 2] >= 1
                keypoints_3d = np.array(ann['keypoints_3d']).reshape(-1, 4)
                keypoints_3d[..., 3] = keypoints_3d[..., 3] >= 1
                bbox = np.array(ann['bbox']).reshape(1, -1)

                pose_det_result = {
                    'image_name': image_name,
                    'bbox': _xywh2xyxy(bbox),
                    'keypoints': keypoints,
                    'keypoints_3d': keypoints_3d
                }
                pose_det_results.append(pose_det_result)
            pose_det_results_list.append(pose_det_results)

    else:
        print('Stage 1: 2D pose detection.')

        pose_det_model = init_pose_model(args.pose_detector_config,
                                         args.pose_detector_checkpoint,
                                         device=args.device.lower())

        assert pose_det_model.cfg.model.type == 'TopDown', 'Only "TopDown"' \
            'model is supported for the 1st stage (2D pose detection)'

        dataset = pose_det_model.cfg.data['test']['type']
        img_keys = list(coco.imgs.keys())

        for i in mmcv.track_iter_progress(range(len(img_keys))):
            # get bounding box annotations
            image_id = img_keys[i]
            image = coco.loadImgs(image_id)[0]
            image_name = osp.join(args.img_root, image['file_name'])
            ann_ids = coco.getAnnIds(image_id)

            # make person results for single image
            person_results = []
            for ann_id in ann_ids:
                person = {}
                ann = coco.anns[ann_id]
                person['bbox'] = ann['bbox']
                person_results.append(person)

            pose_det_results, _ = inference_top_down_pose_model(
                pose_det_model,
                image_name,
                person_results,
                bbox_thr=None,
                format='xywh',
                dataset=dataset,
                return_heatmap=False,
                outputs=None)

            for res in pose_det_results:
                res['image_name'] = image_name
            pose_det_results_list.append(pose_det_results)

    # Second stage: Pose lifting
    print('Stage 2: 2D-to-3D pose lifting.')

    pose_lift_model = init_pose_model(args.pose_lifter_config,
                                      args.pose_lifter_checkpoint,
                                      device=args.device.lower())

    assert pose_lift_model.cfg.model.type == 'PoseLifter', 'Only' \
        '"PoseLifter" model is supported for the 2nd stage ' \
        '(2D-to-3D lifting)'
    dataset = pose_lift_model.cfg.data['test']['type']

    camera_params = None
    if args.camera_param_file is not None:
        camera_params = mmcv.load(args.camera_param_file)

    for i, pose_det_results in enumerate(
            mmcv.track_iter_progress(pose_det_results_list)):
        # 2D-to-3D pose lifting
        # Note that the pose_det_results are regarded as a single-frame pose
        # sequence
        pose_lift_results = inference_pose_lifter_model(
            pose_lift_model,
            pose_results_2d=[pose_det_results],
            dataset=dataset,
            with_track_id=False)

        image_name = pose_det_results[0]['image_name']

        # Pose processing
        pose_lift_results_vis = []
        for idx, res in enumerate(pose_lift_results):
            keypoints_3d = res['keypoints_3d']
            # project to world space
            if camera_params is not None:
                keypoints_3d = _keypoint_camera_to_world(
                    keypoints_3d,
                    camera_params=camera_params,
                    image_name=image_name,
                    dataset=dataset)
            # rebase height (z-axis)
            if args.rebase_keypoint_height:
                keypoints_3d[..., 2] -= np.min(keypoints_3d[..., 2],
                                               axis=-1,
                                               keepdims=True)
            res['keypoints_3d'] = keypoints_3d
            # Add title
            det_res = pose_det_results[idx]
            instance_id = det_res.get('track_id', idx)
            res['title'] = f'Prediction ({instance_id})'
            pose_lift_results_vis.append(res)
            # Add ground truth
            if args.show_ground_truth:
                if 'keypoints_3d' not in det_res:
                    print('Fail to show ground truth. Please make sure that'
                          ' the instance annotations from the Json file'
                          ' contain "keypoints_3d".')
                else:
                    gt = res.copy()
                    gt['keypoints_3d'] = det_res['keypoints_3d']
                    gt['title'] = f'Ground truth ({instance_id})'
                    pose_lift_results_vis.append(gt)

        # Visualization
        if args.out_img_root is None:
            out_file = None
        else:
            os.makedirs(args.out_img_root, exist_ok=True)
            out_file = osp.join(args.out_img_root, f'vis_{i}.jpg')

        vis_3d_pose_result(pose_lift_model,
                           result=pose_lift_results_vis,
                           img=pose_lift_results[0]['image_name'],
                           out_file=out_file)
コード例 #5
0
def main():
    parser = ArgumentParser()
    parser.add_argument('det_config', help='Config file for detection')
    parser.add_argument('det_checkpoint', help='Checkpoint file for detection')
    parser.add_argument(
        'pose_detector_config',
        type=str,
        default=None,
        help='Config file for the 1st stage 2D pose detector')
    parser.add_argument(
        'pose_detector_checkpoint',
        type=str,
        default=None,
        help='Checkpoint file for the 1st stage 2D pose detector')
    parser.add_argument(
        'pose_lifter_config',
        help='Config file for the 2nd stage pose lifter model')
    parser.add_argument(
        'pose_lifter_checkpoint',
        help='Checkpoint file for the 2nd stage pose lifter model')
    parser.add_argument(
        '--video-path', type=str, default='', help='Video path')
    parser.add_argument(
        '--rebase-keypoint-height',
        action='store_true',
        help='Rebase the predicted 3D pose so its lowest keypoint has a '
        'height of 0 (landing on the ground). This is useful for '
        'visualization when the model do not predict the global position '
        'of the 3D pose.')
    parser.add_argument(
        '--norm-pose-2d',
        action='store_true',
        help='Scale the bbox (along with the 2D pose) to the average bbox '
        'scale of the dataset, and move the bbox (along with the 2D pose) to '
        'the average bbox center of the dataset. This is useful when bbox '
        'is small, especially in multi-person scenarios.')
    parser.add_argument(
        '--num-instances',
        type=int,
        default=-1,
        help='The number of 3D poses to be visualized in every frame. If '
        'less than 0, it will be set to the number of pose results in the '
        'first frame.')
    parser.add_argument(
        '--show',
        action='store_true',
        default=False,
        help='whether to show visualizations.')
    parser.add_argument(
        '--out-video-root',
        type=str,
        default=None,
        help='Root of the output video file. '
        'Default not saving the visualization video.')
    parser.add_argument(
        '--device', default='cuda:0', help='Device for inference')
    parser.add_argument(
        '--det-cat-id',
        type=int,
        default=1,
        help='Category id for bounding box detection model')
    parser.add_argument(
        '--bbox-thr',
        type=float,
        default=0.9,
        help='Bounding box score threshold')
    parser.add_argument('--kpt-thr', type=float, default=0.3)
    parser.add_argument(
        '--use-oks-tracking', action='store_true', help='Using OKS tracking')
    parser.add_argument(
        '--tracking-thr', type=float, default=0.3, help='Tracking threshold')
    parser.add_argument(
        '--euro',
        action='store_true',
        help='Using One_Euro_Filter for smoothing')
    parser.add_argument(
        '--radius',
        type=int,
        default=8,
        help='Keypoint radius for visualization')
    parser.add_argument(
        '--thickness',
        type=int,
        default=2,
        help='Link thickness for visualization')

    assert has_mmdet, 'Please install mmdet to run the demo.'

    args = parser.parse_args()
    assert args.show or (args.out_video_root != '')
    assert args.det_config is not None
    assert args.det_checkpoint is not None

    video = mmcv.VideoReader(args.video_path)
    assert video.opened, f'Failed to load video file {args.video_path}'

    # First stage: 2D pose detection
    print('Stage 1: 2D pose detection.')

    person_det_model = init_detector(
        args.det_config, args.det_checkpoint, device=args.device.lower())

    pose_det_model = init_pose_model(
        args.pose_detector_config,
        args.pose_detector_checkpoint,
        device=args.device.lower())

    assert pose_det_model.cfg.model.type == 'TopDown', 'Only "TopDown"' \
        'model is supported for the 1st stage (2D pose detection)'

    pose_det_dataset = pose_det_model.cfg.data['test']['type']

    pose_det_results_list = []
    next_id = 0
    pose_det_results = []
    for frame in video:
        pose_det_results_last = pose_det_results

        # test a single image, the resulting box is (x1, y1, x2, y2)
        mmdet_results = inference_detector(person_det_model, frame)

        # keep the person class bounding boxes.
        person_det_results = process_mmdet_results(mmdet_results,
                                                   args.det_cat_id)

        # make person results for single image
        pose_det_results, _ = inference_top_down_pose_model(
            pose_det_model,
            frame,
            person_det_results,
            bbox_thr=args.bbox_thr,
            format='xyxy',
            dataset=pose_det_dataset,
            return_heatmap=False,
            outputs=None)

        # get track id for each person instance
        pose_det_results, next_id = get_track_id(
            pose_det_results,
            pose_det_results_last,
            next_id,
            use_oks=args.use_oks_tracking,
            tracking_thr=args.tracking_thr,
            use_one_euro=args.euro,
            fps=video.fps)

        pose_det_results_list.append(copy.deepcopy(pose_det_results))

    # Second stage: Pose lifting
    print('Stage 2: 2D-to-3D pose lifting.')

    pose_lift_model = init_pose_model(
        args.pose_lifter_config,
        args.pose_lifter_checkpoint,
        device=args.device.lower())

    assert pose_lift_model.cfg.model.type == 'PoseLifter', \
        'Only "PoseLifter" model is supported for the 2nd stage ' \
        '(2D-to-3D lifting)'
    pose_lift_dataset = pose_lift_model.cfg.data['test']['type']

    if args.out_video_root == '':
        save_out_video = False
    else:
        os.makedirs(args.out_video_root, exist_ok=True)
        save_out_video = True

    if save_out_video:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        fps = video.fps
        writer = None

    # convert keypoint definition
    for pose_det_results in pose_det_results_list:
        for res in pose_det_results:
            keypoints = res['keypoints']
            res['keypoints'] = covert_keypoint_definition(
                keypoints, pose_det_dataset, pose_lift_dataset)

    # load temporal padding config from model.data_cfg
    if hasattr(pose_lift_model.cfg, 'test_data_cfg'):
        data_cfg = pose_lift_model.cfg.test_data_cfg
    else:
        data_cfg = pose_lift_model.cfg.data_cfg

    num_instances = args.num_instances
    for i, pose_det_results in enumerate(
            mmcv.track_iter_progress(pose_det_results_list)):
        # extract and pad input pose2d sequence
        pose_results_2d = extract_pose_sequence(
            pose_det_results_list,
            frame_idx=i,
            causal=data_cfg.causal,
            seq_len=data_cfg.seq_len,
            step=data_cfg.seq_frame_interval)
        # 2D-to-3D pose lifting
        pose_lift_results = inference_pose_lifter_model(
            pose_lift_model,
            pose_results_2d=pose_results_2d,
            dataset=pose_lift_dataset,
            with_track_id=True,
            image_size=video.resolution,
            norm_pose_2d=args.norm_pose_2d)

        # Pose processing
        pose_lift_results_vis = []
        for idx, res in enumerate(pose_lift_results):
            keypoints_3d = res['keypoints_3d']
            # exchange y,z-axis, and then reverse the direction of x,z-axis
            keypoints_3d = keypoints_3d[..., [0, 2, 1]]
            keypoints_3d[..., 0] = -keypoints_3d[..., 0]
            keypoints_3d[..., 2] = -keypoints_3d[..., 2]
            # rebase height (z-axis)
            if args.rebase_keypoint_height:
                keypoints_3d[..., 2] -= np.min(
                    keypoints_3d[..., 2], axis=-1, keepdims=True)
            res['keypoints_3d'] = keypoints_3d
            # add title
            det_res = pose_det_results[idx]
            instance_id = det_res['track_id']
            res['title'] = f'Prediction ({instance_id})'
            # only visualize the target frame
            res['keypoints'] = det_res['keypoints']
            res['bbox'] = det_res['bbox']
            res['track_id'] = instance_id
            pose_lift_results_vis.append(res)

        # Visualization
        if num_instances < 0:
            num_instances = len(pose_lift_results_vis)
        img_vis = vis_3d_pose_result(
            pose_lift_model,
            result=pose_lift_results_vis,
            img=video[i],
            out_file=None,
            radius=args.radius,
            thickness=args.thickness,
            num_instances=num_instances)

        if save_out_video:
            if writer is None:
                writer = cv2.VideoWriter(
                    osp.join(args.out_video_root,
                             f'vis_{osp.basename(args.video_path)}'), fourcc,
                    fps, (img_vis.shape[1], img_vis.shape[0]))
            writer.write(img_vis)

    if save_out_video:
        writer.release()
コード例 #6
0
def main():
    parser = ArgumentParser()
    parser.add_argument('pose_config', help='Config file for pose network')
    parser.add_argument('pose_checkpoint', help='Checkpoint file')
    parser.add_argument('--img-root', type=str, default='', help='Image root')
    parser.add_argument('--json-file',
                        type=str,
                        default='',
                        help='Json file containing image info.')
    parser.add_argument(
        '--camera-param-file',
        type=str,
        default=None,
        help='Camera parameter file for converting 3D pose predictions from '
        ' the pixel space to camera space. If None, keypoints in pixel space'
        'will be visualized')
    parser.add_argument(
        '--gt-joints-file',
        type=str,
        default=None,
        help='Optional arguement. Ground truth 3D keypoint parameter file. '
        'If None, gt keypoints will not be shown and keypoints in pixel '
        'space will be visualized.')
    parser.add_argument(
        '--rebase-keypoint-height',
        action='store_true',
        help='Rebase the predicted 3D pose so its lowest keypoint has a '
        'height of 0 (landing on the ground). This is useful for '
        'visualization when the model do not predict the global position '
        'of the 3D pose.')
    parser.add_argument(
        '--show-ground-truth',
        action='store_true',
        help='If True, show ground truth keypoint if it is available.')
    parser.add_argument('--show',
                        action='store_true',
                        default=False,
                        help='whether to show img')
    parser.add_argument('--out-img-root',
                        type=str,
                        default=None,
                        help='Root of the output visualization images. '
                        'Default not saving the visualization images.')
    parser.add_argument('--device',
                        default='cuda:0',
                        help='Device for inference')
    parser.add_argument('--kpt-thr',
                        type=float,
                        default=0.3,
                        help='Keypoint score threshold')
    parser.add_argument('--radius',
                        type=int,
                        default=4,
                        help='Keypoint radius for visualization')
    parser.add_argument('--thickness',
                        type=int,
                        default=1,
                        help='Link thickness for visualization')

    args = parser.parse_args()
    assert args.show or (args.out_img_root != '')

    coco = COCO(args.json_file)

    # build the pose model from a config file and a checkpoint file
    pose_model = init_pose_model(args.pose_config,
                                 args.pose_checkpoint,
                                 device=args.device.lower())
    dataset = pose_model.cfg.data['test']['type']

    # load camera parameters
    camera_params = None
    if args.camera_param_file is not None:
        camera_params = mmcv.load(args.camera_param_file)
    # load ground truth joints parameters
    gt_joint_params = None
    if args.gt_joints_file is not None:
        gt_joint_params = mmcv.load(args.gt_joints_file)

    # load hand bounding boxes
    det_results_list = []
    for image_id, image in coco.imgs.items():
        image_name = osp.join(args.img_root, image['file_name'])

        ann_ids = coco.getAnnIds(image_id)
        det_results = []

        capture_key = str(image['capture'])
        camera_key = image['camera']
        frame_idx = image['frame_idx']

        for ann_id in ann_ids:
            ann = coco.anns[ann_id]
            if camera_params is not None:
                camera_param = {
                    key: camera_params[capture_key][key][camera_key]
                    for key in camera_params[capture_key].keys()
                }
                camera_param = _transform_interhand_camera_param(camera_param)
            else:
                camera_param = None
            if gt_joint_params is not None:
                joint_param = gt_joint_params[capture_key][str(frame_idx)]
                gt_joint = np.concatenate([
                    np.array(joint_param['world_coord']),
                    np.array(joint_param['joint_valid'])
                ],
                                          axis=-1)
            else:
                gt_joint = None

            det_result = {
                'image_name': image_name,
                'bbox': ann['bbox'],  # bbox format is 'xywh'
                'camera_param': camera_param,
                'keypoints_3d_gt': gt_joint
            }
            det_results.append(det_result)
        det_results_list.append(det_results)

    for i, det_results in enumerate(
            mmcv.track_iter_progress(det_results_list)):

        image_name = det_results[0]['image_name']

        pose_results = inference_interhand_3d_model(pose_model,
                                                    image_name,
                                                    det_results,
                                                    dataset=dataset)

        # Post processing
        pose_results_vis = []
        for idx, res in enumerate(pose_results):
            keypoints_3d = res['keypoints_3d']
            # normalize kpt score
            if keypoints_3d[:, 3].max() > 1:
                keypoints_3d[:, 3] /= 255
            # get 2D keypoints in pixel space
            res['keypoints'] = keypoints_3d[:, [0, 1, 3]]

            # For model-predicted keypoints, channel 0 and 1 are coordinates
            # in pixel space, and channel 2 is the depth (in mm) relative
            # to root joints.
            # If both camera parameter and absolute depth of root joints are
            # provided, we can transform keypoint to camera space for better
            # visualization.
            camera_param = res['camera_param']
            keypoints_3d_gt = res['keypoints_3d_gt']
            if camera_param is not None and keypoints_3d_gt is not None:
                # build camera model
                camera = SimpleCamera(camera_param)
                # transform gt joints from world space to camera space
                keypoints_3d_gt[:, :3] = camera.world_to_camera(
                    keypoints_3d_gt[:, :3])

                # transform relative depth to absolute depth
                keypoints_3d[:21, 2] += keypoints_3d_gt[20, 2]
                keypoints_3d[21:, 2] += keypoints_3d_gt[41, 2]

                # transform keypoints from pixel space to camera space
                keypoints_3d[:, :3] = camera.pixel_to_camera(
                    keypoints_3d[:, :3])

            # rotate the keypoint to make z-axis correspondent to height
            # for better visualization
            vis_R = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
            keypoints_3d[:, :3] = keypoints_3d[:, :3] @ vis_R
            if keypoints_3d_gt is not None:
                keypoints_3d_gt[:, :3] = keypoints_3d_gt[:, :3] @ vis_R

            # rebase height (z-axis)
            if args.rebase_keypoint_height:
                valid = keypoints_3d[..., 3] > 0
                keypoints_3d[..., 2] -= np.min(keypoints_3d[valid, 2],
                                               axis=-1,
                                               keepdims=True)
            res['keypoints_3d'] = keypoints_3d
            res['keypoints_3d_gt'] = keypoints_3d_gt

            # Add title
            instance_id = res.get('track_id', idx)
            res['title'] = f'Prediction ({instance_id})'
            pose_results_vis.append(res)
            # Add ground truth
            if args.show_ground_truth:
                if keypoints_3d_gt is None:
                    print('Fail to show ground truth. Please make sure that'
                          ' gt-joints-file is provided.')
                else:
                    gt = res.copy()
                    if args.rebase_keypoint_height:
                        valid = keypoints_3d_gt[..., 3] > 0
                        keypoints_3d_gt[...,
                                        2] -= np.min(keypoints_3d_gt[valid, 2],
                                                     axis=-1,
                                                     keepdims=True)
                    gt['keypoints_3d'] = keypoints_3d_gt
                    gt['title'] = f'Ground truth ({instance_id})'
                    pose_results_vis.append(gt)

        # Visualization
        if args.out_img_root is None:
            out_file = None
        else:
            os.makedirs(args.out_img_root, exist_ok=True)
            out_file = osp.join(args.out_img_root, f'vis_{i}.jpg')

        vis_3d_pose_result(
            pose_model,
            result=pose_results_vis,
            img=det_results[0]['image_name'],
            out_file=out_file,
            dataset=dataset,
            show=args.show,
            kpt_score_thr=args.kpt_thr,
            radius=args.radius,
            thickness=args.thickness,
        )
コード例 #7
0
def test_inference_without_dataset_info():
    # Top down
    pose_model = init_pose_model(
        'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
        'coco/res50_coco_256x192.py',
        None,
        device='cpu')

    if 'dataset_info' in pose_model.cfg:
        _ = pose_model.cfg.pop('dataset_info')

    image_name = 'tests/data/coco/000000000785.jpg'
    person_result = []
    person_result.append({'bbox': [50, 50, 50, 100]})

    with pytest.warns(DeprecationWarning):
        pose_results, _ = inference_top_down_pose_model(pose_model,
                                                        image_name,
                                                        person_result,
                                                        format='xywh')

    with pytest.warns(DeprecationWarning):
        vis_pose_result(pose_model, image_name, pose_results)

    with pytest.raises(NotImplementedError):
        with pytest.warns(DeprecationWarning):
            pose_results, _ = inference_top_down_pose_model(pose_model,
                                                            image_name,
                                                            person_result,
                                                            format='xywh',
                                                            dataset='test')

    # Bottom up
    pose_model = init_pose_model(
        'configs/body/2d_kpt_sview_rgb_img/associative_embedding/'
        'coco/res50_coco_512x512.py',
        None,
        device='cpu')
    if 'dataset_info' in pose_model.cfg:
        _ = pose_model.cfg.pop('dataset_info')

    image_name = 'tests/data/coco/000000000785.jpg'

    with pytest.warns(DeprecationWarning):
        pose_results, _ = inference_bottom_up_pose_model(
            pose_model, image_name)
    with pytest.warns(DeprecationWarning):
        vis_pose_result(pose_model, image_name, pose_results)

    # Top down tracking
    pose_model = init_pose_model(
        'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
        'coco/res50_coco_256x192.py',
        None,
        device='cpu')

    if 'dataset_info' in pose_model.cfg:
        _ = pose_model.cfg.pop('dataset_info')

    image_name = 'tests/data/coco/000000000785.jpg'
    person_result = [{'bbox': [50, 50, 50, 100]}]

    with pytest.warns(DeprecationWarning):
        pose_results, _ = inference_top_down_pose_model(pose_model,
                                                        image_name,
                                                        person_result,
                                                        format='xywh')

    pose_results, _ = get_track_id(pose_results, [], next_id=0)

    with pytest.warns(DeprecationWarning):
        vis_pose_tracking_result(pose_model, image_name, pose_results)

    with pytest.raises(NotImplementedError):
        with pytest.warns(DeprecationWarning):
            vis_pose_tracking_result(pose_model,
                                     image_name,
                                     pose_results,
                                     dataset='test')

    # Bottom up tracking
    pose_model = init_pose_model(
        'configs/body/2d_kpt_sview_rgb_img/associative_embedding/'
        'coco/res50_coco_512x512.py',
        None,
        device='cpu')

    if 'dataset_info' in pose_model.cfg:
        _ = pose_model.cfg.pop('dataset_info')

    image_name = 'tests/data/coco/000000000785.jpg'
    with pytest.warns(DeprecationWarning):
        pose_results, _ = inference_bottom_up_pose_model(
            pose_model, image_name)

    pose_results, next_id = get_track_id(pose_results, [], next_id=0)

    with pytest.warns(DeprecationWarning):
        vis_pose_tracking_result(pose_model,
                                 image_name,
                                 pose_results,
                                 dataset='BottomUpCocoDataset')

    # Pose lifting
    pose_model = init_pose_model(
        'configs/body/3d_kpt_sview_rgb_img/pose_lift/'
        'h36m/simplebaseline3d_h36m.py',
        None,
        device='cpu')

    pose_det_result = {
        'keypoints': np.zeros((17, 3)),
        'bbox': [50, 50, 50, 50],
        'track_id': 0,
        'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
    }

    if 'dataset_info' in pose_model.cfg:
        _ = pose_model.cfg.pop('dataset_info')

    pose_results_2d = [[pose_det_result]]

    dataset = pose_model.cfg.data['test']['type']

    pose_results_2d = extract_pose_sequence(pose_results_2d,
                                            frame_idx=0,
                                            causal=False,
                                            seq_len=1,
                                            step=1)

    with pytest.warns(DeprecationWarning):
        _ = inference_pose_lifter_model(pose_model,
                                        pose_results_2d,
                                        dataset,
                                        with_track_id=False)

    with pytest.warns(DeprecationWarning):
        pose_lift_results = inference_pose_lifter_model(pose_model,
                                                        pose_results_2d,
                                                        dataset,
                                                        with_track_id=True)

    for res in pose_lift_results:
        res['title'] = 'title'
    with pytest.warns(DeprecationWarning):
        vis_3d_pose_result(pose_model,
                           pose_lift_results,
                           img=pose_results_2d[0][0]['image_name'],
                           dataset=dataset)

    with pytest.raises(NotImplementedError):
        with pytest.warns(DeprecationWarning):
            _ = inference_pose_lifter_model(pose_model,
                                            pose_results_2d,
                                            dataset='test')
コード例 #8
0
def main():
    parser = ArgumentParser()
    parser.add_argument('det_config', help='Config file for detection')
    parser.add_argument('det_checkpoint', help='Checkpoint file for detection')
    parser.add_argument('pose_detector_config',
                        type=str,
                        default=None,
                        help='Config file for the 1st stage 2D pose detector')
    parser.add_argument(
        'pose_detector_checkpoint',
        type=str,
        default=None,
        help='Checkpoint file for the 1st stage 2D pose detector')
    parser.add_argument('pose_lifter_config',
                        help='Config file for the 2nd stage pose lifter model')
    parser.add_argument(
        'pose_lifter_checkpoint',
        help='Checkpoint file for the 2nd stage pose lifter model')
    parser.add_argument('--video-path',
                        type=str,
                        default='',
                        help='Video path')
    parser.add_argument(
        '--rebase-keypoint-height',
        action='store_true',
        help='Rebase the predicted 3D pose so its lowest keypoint has a '
        'height of 0 (landing on the ground). This is useful for '
        'visualization when the model do not predict the global position '
        'of the 3D pose.')
    parser.add_argument(
        '--norm-pose-2d',
        action='store_true',
        help='Scale the bbox (along with the 2D pose) to the average bbox '
        'scale of the dataset, and move the bbox (along with the 2D pose) to '
        'the average bbox center of the dataset. This is useful when bbox '
        'is small, especially in multi-person scenarios.')
    parser.add_argument(
        '--num-instances',
        type=int,
        default=-1,
        help='The number of 3D poses to be visualized in every frame. If '
        'less than 0, it will be set to the number of pose results in the '
        'first frame.')
    parser.add_argument('--show',
                        action='store_true',
                        default=False,
                        help='whether to show visualizations.')
    parser.add_argument('--out-video-root',
                        type=str,
                        default='vis_results',
                        help='Root of the output video file. '
                        'Default not saving the visualization video.')
    parser.add_argument('--device',
                        default='cuda:0',
                        help='Device for inference')
    parser.add_argument('--det-cat-id',
                        type=int,
                        default=1,
                        help='Category id for bounding box detection model')
    parser.add_argument('--bbox-thr',
                        type=float,
                        default=0.9,
                        help='Bounding box score threshold')
    parser.add_argument('--kpt-thr', type=float, default=0.3)
    parser.add_argument('--use-oks-tracking',
                        action='store_true',
                        help='Using OKS tracking')
    parser.add_argument('--tracking-thr',
                        type=float,
                        default=0.3,
                        help='Tracking threshold')
    parser.add_argument('--radius',
                        type=int,
                        default=8,
                        help='Keypoint radius for visualization')
    parser.add_argument('--thickness',
                        type=int,
                        default=2,
                        help='Link thickness for visualization')
    parser.add_argument(
        '--smooth',
        action='store_true',
        help='Apply a temporal filter to smooth the 2D pose estimation '
        'results. See also --smooth-filter-cfg.')
    parser.add_argument(
        '--smooth-filter-cfg',
        type=str,
        default='configs/_base_/filters/one_euro.py',
        help='Config file of the filter to smooth the pose estimation '
        'results. See also --smooth.')
    parser.add_argument(
        '--use-multi-frames',
        action='store_true',
        default=False,
        help='whether to use multi frames for inference in the 2D pose'
        'detection stage. Default: False.')
    parser.add_argument(
        '--online',
        action='store_true',
        default=False,
        help='inference mode. If set to True, can not use future frame'
        'information when using multi frames for inference in the 2D pose'
        'detection stage. Default: False.')

    assert has_mmdet, 'Please install mmdet to run the demo.'

    args = parser.parse_args()
    assert args.show or (args.out_video_root != '')
    assert args.det_config is not None
    assert args.det_checkpoint is not None

    video = mmcv.VideoReader(args.video_path)
    assert video.opened, f'Failed to load video file {args.video_path}'

    # First stage: 2D pose detection
    print('Stage 1: 2D pose detection.')

    print('Initializing model...')
    person_det_model = init_detector(args.det_config,
                                     args.det_checkpoint,
                                     device=args.device.lower())

    pose_det_model = init_pose_model(args.pose_detector_config,
                                     args.pose_detector_checkpoint,
                                     device=args.device.lower())

    assert isinstance(pose_det_model, TopDown), 'Only "TopDown"' \
        'model is supported for the 1st stage (2D pose detection)'

    # frame index offsets for inference, used in multi-frame inference setting
    if args.use_multi_frames:
        assert 'frame_indices_test' in pose_det_model.cfg.data.test.data_cfg
        indices = pose_det_model.cfg.data.test.data_cfg['frame_indices_test']

    pose_det_dataset = pose_det_model.cfg.data['test']['type']
    # get datasetinfo
    dataset_info = pose_det_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        dataset_info = DatasetInfo(dataset_info)

    pose_det_results_list = []
    next_id = 0
    pose_det_results = []

    # whether to return heatmap, optional
    return_heatmap = False

    # return the output of some desired layers,
    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None

    print('Running 2D pose detection inference...')
    for frame_id, cur_frame in enumerate(mmcv.track_iter_progress(video)):
        pose_det_results_last = pose_det_results

        # test a single image, the resulting box is (x1, y1, x2, y2)
        mmdet_results = inference_detector(person_det_model, cur_frame)

        # keep the person class bounding boxes.
        person_det_results = process_mmdet_results(mmdet_results,
                                                   args.det_cat_id)

        if args.use_multi_frames:
            frames = collect_multi_frames(video, frame_id, indices,
                                          args.online)

        # make person results for current image
        pose_det_results, _ = inference_top_down_pose_model(
            pose_det_model,
            frames if args.use_multi_frames else cur_frame,
            person_det_results,
            bbox_thr=args.bbox_thr,
            format='xyxy',
            dataset=pose_det_dataset,
            dataset_info=dataset_info,
            return_heatmap=return_heatmap,
            outputs=output_layer_names)

        # get track id for each person instance
        pose_det_results, next_id = get_track_id(
            pose_det_results,
            pose_det_results_last,
            next_id,
            use_oks=args.use_oks_tracking,
            tracking_thr=args.tracking_thr)

        pose_det_results_list.append(copy.deepcopy(pose_det_results))

    # Second stage: Pose lifting
    print('Stage 2: 2D-to-3D pose lifting.')

    print('Initializing model...')
    pose_lift_model = init_pose_model(args.pose_lifter_config,
                                      args.pose_lifter_checkpoint,
                                      device=args.device.lower())

    assert isinstance(pose_lift_model, PoseLifter), \
        'Only "PoseLifter" model is supported for the 2nd stage ' \
        '(2D-to-3D lifting)'
    pose_lift_dataset = pose_lift_model.cfg.data['test']['type']

    if args.out_video_root == '':
        save_out_video = False
    else:
        os.makedirs(args.out_video_root, exist_ok=True)
        save_out_video = True

    if save_out_video:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        fps = video.fps
        writer = None

    # convert keypoint definition
    for pose_det_results in pose_det_results_list:
        for res in pose_det_results:
            keypoints = res['keypoints']
            res['keypoints'] = convert_keypoint_definition(
                keypoints, pose_det_dataset, pose_lift_dataset)

    # load temporal padding config from model.data_cfg
    if hasattr(pose_lift_model.cfg, 'test_data_cfg'):
        data_cfg = pose_lift_model.cfg.test_data_cfg
    else:
        data_cfg = pose_lift_model.cfg.data_cfg

    # build pose smoother for temporal refinement
    if args.smooth:
        smoother = Smoother(filter_cfg=args.smooth_filter_cfg,
                            keypoint_key='keypoints',
                            keypoint_dim=2)
    else:
        smoother = None

    num_instances = args.num_instances
    pose_lift_dataset_info = pose_lift_model.cfg.data['test'].get(
        'dataset_info', None)
    if pose_lift_dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        pose_lift_dataset_info = DatasetInfo(pose_lift_dataset_info)

    print('Running 2D-to-3D pose lifting inference...')
    for i, pose_det_results in enumerate(
            mmcv.track_iter_progress(pose_det_results_list)):
        # extract and pad input pose2d sequence
        pose_results_2d = extract_pose_sequence(
            pose_det_results_list,
            frame_idx=i,
            causal=data_cfg.causal,
            seq_len=data_cfg.seq_len,
            step=data_cfg.seq_frame_interval)

        # smooth 2d results
        if smoother:
            pose_results_2d = smoother.smooth(pose_results_2d)

        # 2D-to-3D pose lifting
        pose_lift_results = inference_pose_lifter_model(
            pose_lift_model,
            pose_results_2d=pose_results_2d,
            dataset=pose_lift_dataset,
            dataset_info=pose_lift_dataset_info,
            with_track_id=True,
            image_size=video.resolution,
            norm_pose_2d=args.norm_pose_2d)

        # Pose processing
        pose_lift_results_vis = []
        for idx, res in enumerate(pose_lift_results):
            keypoints_3d = res['keypoints_3d']
            # exchange y,z-axis, and then reverse the direction of x,z-axis
            keypoints_3d = keypoints_3d[..., [0, 2, 1]]
            keypoints_3d[..., 0] = -keypoints_3d[..., 0]
            keypoints_3d[..., 2] = -keypoints_3d[..., 2]
            # rebase height (z-axis)
            if args.rebase_keypoint_height:
                keypoints_3d[..., 2] -= np.min(keypoints_3d[..., 2],
                                               axis=-1,
                                               keepdims=True)
            res['keypoints_3d'] = keypoints_3d
            # add title
            det_res = pose_det_results[idx]
            instance_id = det_res['track_id']
            res['title'] = f'Prediction ({instance_id})'
            # only visualize the target frame
            res['keypoints'] = det_res['keypoints']
            res['bbox'] = det_res['bbox']
            res['track_id'] = instance_id
            pose_lift_results_vis.append(res)

        # Visualization
        if num_instances < 0:
            num_instances = len(pose_lift_results_vis)
        img_vis = vis_3d_pose_result(pose_lift_model,
                                     result=pose_lift_results_vis,
                                     img=video[i],
                                     dataset=pose_lift_dataset,
                                     dataset_info=pose_lift_dataset_info,
                                     out_file=None,
                                     radius=args.radius,
                                     thickness=args.thickness,
                                     num_instances=num_instances,
                                     show=args.show)

        if save_out_video:
            if writer is None:
                writer = cv2.VideoWriter(
                    osp.join(args.out_video_root,
                             f'vis_{osp.basename(args.video_path)}'), fourcc,
                    fps, (img_vis.shape[1], img_vis.shape[0]))
            writer.write(img_vis)

    if save_out_video:
        writer.release()