コード例 #1
0
    def __init__(self,
                 data_arrays,
                 xray_structure,
                 log=None,
                 silent=False,
                 output_file=None,
                 peak_search=False,
                 map_cutoff=None,
                 peak_search_params=None,
                 r_free_arrays=None,
                 write_map=True,
                 multiscale=False,
                 anomalous=False):
        if (log is None): log = sys.stdout
        adopt_init_args(self, locals())
        fmodels = []
        for i_seq, d in enumerate(data_arrays):
            if (not silent):
                print("Data set: %d" % i_seq, file=log)
            if (d.anomalous_flag()) and (not anomalous):
                d = d.average_bijvoet_mates()
            elif (anomalous):
                assert d.anomalous_flag()
            if (r_free_arrays is not None) and (i_seq < len(r_free_arrays)):
                r_free_flags = r_free_arrays[i_seq]
            else:
                r_free_flags = d.array(data=flex.bool(d.data().size(), False))
            fmodel = mmtbx.f_model.manager(xray_structure=xray_structure,
                                           r_free_flags=r_free_flags,
                                           target_name="ls_wunit_k1",
                                           f_obs=d)
            fmodel.update_all_scales(log=None)
            if (not silent):
                fmodel.info().show_rfactors_targets_scales_overall(out=log)
                print(file=log)
            fmodels.append(fmodel)
        self.fmodel = fmodels[0]
        # prepare Fobs for map calculation (apply scaling):
        f_obss = []
        for fmodel in fmodels:
            obs = fmodel.f_obs()
            f_obs_scale = 1.0 / fmodel.k_anisotropic() / fmodel.k_isotropic()
            obs = miller.array(miller_set=fmodel.f_model(),
                               data=obs.data() * f_obs_scale)
            f_obss.append(obs)
        # given two Fobs sets, make them one-to-one matching, get phases and map coefficients
        # Note: f_calc below is just f_calc from atoms (no bulk solvent etc applied)
        fobs_1, f_model = f_obss[0].common_sets(other=fmodels[1].f_model())
        fobs_1, fobs_2 = fobs_1.common_sets(other=f_obss[1])
        fobs_1, f_model = fobs_1.common_sets(other=f_model)
        self.f_model = f_model
        assert fobs_2.indices().all_eq(fobs_1.indices())
        assert f_model.indices().all_eq(fobs_1.indices())
        # scale again
        scale_k1 = 1
        den = flex.sum(flex.abs(fobs_2.data()) * flex.abs(fobs_2.data()))
        if (den != 0):
            scale_k1 = flex.sum(
                flex.abs(fobs_1.data()) * flex.abs(fobs_2.data())) / den
        #
        fobs_2 = fobs_2.array(data=fobs_2.data() * scale_k1)
        if multiscale:
            fobs_1 = fobs_2.multiscale(other=fobs_1, reflections_per_bin=250)
        if (not silent):
            print("", file=log)
            print("Fobs1_vs_Fobs2 statistics:", file=log)
            print("Bin# Resolution range  Compl.  No.of refl. CC   R-factor",
                  file=log)
            fobs_1.setup_binner(
                reflections_per_bin=min(500,
                                        fobs_1.data().size()))
            fobs_2.use_binning_of(fobs_1)
            for i_bin in fobs_1.binner().range_used():
                sel = fobs_1.binner().selection(i_bin)
                f1 = fobs_1.select(sel)
                f2 = fobs_2.select(sel)
                d_max, d_min = fobs_1.d_max_min()
                compl = fobs_1.completeness(d_max=d_max)
                n_ref = sel.count(True)
                num = flex.sum(flex.abs(f1.data() - f2.data()))
                den = flex.sum(flex.abs(f1.data() + f2.data()) / 2)
                r = None
                if (den != 0):
                    r = num / den
                cc = flex.linear_correlation(x=f1.data(),
                                             y=f2.data()).coefficient()
                d_range = fobs_1.binner().bin_legend(i_bin=i_bin,
                                                     show_bin_number=False,
                                                     show_counts=False)
                fmt = "%3d: %-17s   %4.2f %6d         %5.3f  %6s"
                print(fmt % (i_bin, d_range, compl, n_ref, cc,
                             format_value("%6.4f", r)),
                      file=log)
        # overall statistics
        self.cc = flex.linear_correlation(x=fobs_1.data(),
                                          y=fobs_2.data()).coefficient()
        num = flex.sum(flex.abs(fobs_1.data() - fobs_2.data()))
        den = flex.sum(flex.abs(fobs_2.data() + fobs_2.data()) / 2)
        self.r_factor = None
        if (den != 0):
            self.r_factor = num / den
        # map coefficients
        def phase_transfer(miller_array, phase_source):
            tmp = miller.array(
                miller_set=miller_array,
                data=flex.double(miller_array.indices().size(),
                                 1)).phase_transfer(phase_source=phase_source)
            return miller.array(miller_set=miller_array,
                                data=miller_array.data() * tmp.data())

        if (not anomalous):
            diff = miller.array(miller_set=f_model,
                                data=fobs_1.data() - fobs_2.data())
            self.map_coeff = phase_transfer(miller_array=diff,
                                            phase_source=f_model)
        else:
            dano_1 = fobs_1.anomalous_differences()
            dano_2 = fobs_2.anomalous_differences()
            assert dano_1.indices().all_eq(dano_2.indices())
            diff = miller.array(miller_set=dano_1,
                                data=dano_1.data() - dano_2.data())
            f_model_phases = f_model.average_bijvoet_mates().common_set(diff)
            map_coeffs = phase_transfer(miller_array=diff,
                                        phase_source=f_model_phases)
            self.map_coeff = map_coeffs.customized_copy(
                data=map_coeffs.data() / (2j))
        if (self.map_coeff.anomalous_flag()):
            self.map_coeff = map_coeff.average_bijvoet_mates()
        self.file_names = []
        if (write_map):
            self.file_names = self.write_map_file()
コード例 #2
0
 def __init__ (self,
     data_arrays,
     xray_structure,
     log=None,
     silent=False,
     output_file=None,
     peak_search=False,
     map_cutoff=None,
     peak_search_params=None,
     r_free_arrays=None,
     write_map=True,
     multiscale=False,
     anomalous=False) :
   if (log is None) : log = sys.stdout
   adopt_init_args(self, locals())
   fmodels = []
   for i_seq, d in enumerate(data_arrays):
     if(not silent):
       print >> log, "Data set: %d"%i_seq
     if(d.anomalous_flag()) and (not anomalous) :
       d = d.average_bijvoet_mates()
     elif (anomalous) :
       assert d.anomalous_flag()
     if (r_free_arrays is not None) and (i_seq < len(r_free_arrays)) :
       r_free_flags = r_free_arrays[i_seq]
     else :
       r_free_flags = d.array(data = flex.bool(d.data().size(), False))
     fmodel = mmtbx.f_model.manager(
       xray_structure = xray_structure,
       r_free_flags   = r_free_flags,
       target_name    = "ls_wunit_k1",
       f_obs          = d)
     fmodel.update_all_scales(log=None)
     if(not silent):
       fmodel.info().show_rfactors_targets_scales_overall(out=log)
       print >> log
     fmodels.append(fmodel)
   self.fmodel = fmodels[0]
   # prepare Fobs for map calculation (apply scaling):
   f_obss = []
   for fmodel in fmodels:
     obs = fmodel.f_obs()
     f_obs_scale   = 1.0 / fmodel.k_anisotropic() / fmodel.k_isotropic()
     obs = miller.array(miller_set = fmodel.f_model(),
                        data       = obs.data()*f_obs_scale)
     f_obss.append(obs)
   # given two Fobs sets, make them one-to-one matching, get phases and map coefficients
   # Note: f_calc below is just f_calc from atoms (no bulk solvent etc applied)
   fobs_1, f_model = f_obss[0].common_sets(other = fmodels[1].f_model())
   fobs_1, fobs_2 = fobs_1.common_sets(other = f_obss[1])
   fobs_1, f_model = fobs_1.common_sets(other = f_model)
   self.f_model = f_model
   assert fobs_2.indices().all_eq(fobs_1.indices())
   assert f_model.indices().all_eq(fobs_1.indices())
   # scale again
   scale_k1 = 1
   den = flex.sum(flex.abs(fobs_2.data())*flex.abs(fobs_2.data()))
   if(den != 0):
     scale_k1 = flex.sum(flex.abs(fobs_1.data())*flex.abs(fobs_2.data())) / den
   #
   fobs_2 = fobs_2.array(data = fobs_2.data()*scale_k1)
   if multiscale:
     fobs_1 = fobs_2.multiscale(other = fobs_1, reflections_per_bin=250)
   if(not silent):
     print >> log, ""
     print >> log, "Fobs1_vs_Fobs2 statistics:"
     print >> log, "Bin# Resolution range  Compl.  No.of refl. CC   R-factor"
     fobs_1.setup_binner(reflections_per_bin = min(500, fobs_1.data().size()))
     fobs_2.use_binning_of(fobs_1)
     for i_bin in fobs_1.binner().range_used():
       sel = fobs_1.binner().selection(i_bin)
       f1  = fobs_1.select(sel)
       f2  = fobs_2.select(sel)
       d_max, d_min = fobs_1.d_max_min()
       compl = fobs_1.completeness(d_max = d_max)
       n_ref = sel.count(True)
       num = flex.sum(flex.abs(f1.data()-f2.data()))
       den = flex.sum(flex.abs(f1.data()+f2.data())/2)
       r = None
       if(den!=0):
         r = num/den
       cc = flex.linear_correlation(x=f1.data(), y=f2.data()).coefficient()
       d_range = fobs_1.binner().bin_legend(
                      i_bin = i_bin, show_bin_number = False, show_counts = False)
       fmt = "%3d: %-17s   %4.2f %6d         %5.3f  %6s"
       print >> log, fmt % (i_bin, d_range, compl, n_ref, cc,
         format_value("%6.4f", r))
   # overall statistics
   self.cc = flex.linear_correlation(
     x=fobs_1.data(),
     y=fobs_2.data()).coefficient()
   num = flex.sum(flex.abs(fobs_1.data()-fobs_2.data()))
   den = flex.sum(flex.abs(fobs_2.data()+fobs_2.data())/2)
   self.r_factor = None
   if (den != 0) :
     self.r_factor = num / den
   # map coefficients
   def phase_transfer(miller_array, phase_source):
     tmp = miller.array(miller_set = miller_array,
       data = flex.double(miller_array.indices().size(), 1)
       ).phase_transfer(phase_source = phase_source)
     return miller.array(miller_set = miller_array,
       data = miller_array.data() * tmp.data() )
   if (not anomalous) :
     diff = miller.array(
       miller_set = f_model,
       data       = fobs_1.data()-fobs_2.data())
     self.map_coeff = phase_transfer(
       miller_array = diff,
       phase_source = f_model)
   else :
     dano_1 = fobs_1.anomalous_differences()
     dano_2 = fobs_2.anomalous_differences()
     assert dano_1.indices().all_eq(dano_2.indices())
     diff = miller.array(
       miller_set = dano_1,
       data = dano_1.data() - dano_2.data())
     f_model_phases = f_model.average_bijvoet_mates().common_set(diff)
     map_coeffs = phase_transfer(
       miller_array = diff,
       phase_source = f_model_phases)
     self.map_coeff = map_coeffs.customized_copy(data=map_coeffs.data()/(2j))
   if(self.map_coeff.anomalous_flag()):
     self.map_coeff = map_coeff.average_bijvoet_mates()
   self.file_names = []
   if (write_map) :
     self.file_names = self.write_map_file()