コード例 #1
0
def test_receptive_field():
    """Test model prep and fitting."""
    from sklearn.linear_model import Ridge
    # Make sure estimator pulling works
    mod = Ridge()

    # Test the receptive field model
    # Define parameters for the model and simulate inputs + weights
    tmin, tmax = 0., 10.
    n_feats = 3
    X = rng.randn(n_feats, 10000)
    w = rng.randn(int((tmax - tmin) + 1) * n_feats)

    # Delay inputs and cut off first 4 values since they'll be cut in the fit
    X_del = np.vstack(_delay_time_series(X, tmin, tmax, 1., axis=-1))
    y = np.dot(w, X_del)
    X = np.rollaxis(X, -1, 0)  # time to first dimension

    # Fit the model and test values
    feature_names = ['feature_%i' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod)
    rf.fit(X, y)
    assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))

    y_pred = rf.predict(X)
    assert_array_almost_equal(y[rf.keep_samples_],
                              y_pred.squeeze()[rf.keep_samples_], 2)
    scores = rf.score(X, y)
    assert_true(scores > .99)
    assert_array_almost_equal(rf.coef_.reshape(-1, order='F'), w, 2)
    # Make sure different input shapes work
    rf.fit(X[:, np.newaxis:, ], y[:, np.newaxis])
    rf.fit(X, y[:, np.newaxis])
    assert_raises(ValueError, rf.fit, X[..., np.newaxis], y)
    assert_raises(ValueError, rf.fit, X[:, 0], y)
    assert_raises(ValueError, rf.fit, X[..., np.newaxis],
                  np.tile(y[..., np.newaxis], [2, 1, 1]))
    # stim features must match length of input data
    assert_raises(ValueError, rf.fit, X[:, :1], y)
    # auto-naming features
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
    rf.fit(X, y)
    assert_equal(rf.feature_names, ['feature_%s' % ii for ii in [0, 1, 2]])
    # X/y same n timepoints
    assert_raises(ValueError, rf.fit, X, y[:-2])
    # Float becomes ridge
    rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'],
                        estimator=0)
    str(rf)  # repr works before fit
    rf.fit(X, y)
    assert_true(isinstance(rf.estimator_, TimeDelayingRidge))
    str(rf)  # repr works after fit
    rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0)
    rf.fit(X[:, [0]], y)
    str(rf)  # repr with one feature
    # Should only accept estimators or floats
    rf = ReceptiveField(tmin, tmax, 1, estimator='foo')
    assert_raises(ValueError, rf.fit, X, y)
    rf = ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3]))
    assert_raises(ValueError, rf.fit, X, y)
    # tmin must be <= tmax
    rf = ReceptiveField(5, 4, 1)
    assert_raises(ValueError, rf.fit, X, y)
    # scorers
    for key, val in _SCORERS.items():
        rf = ReceptiveField(tmin, tmax, 1, ['one'],
                            estimator=0, scoring=key)
        rf.fit(X[:, [0]], y)
        y_pred = rf.predict(X[:, [0]])
        assert_array_almost_equal(val(y[:, np.newaxis], y_pred),
                                  rf.score(X[:, [0]], y), 4)
    # Need 2D input
    assert_raises(ValueError, _SCORERS['corrcoef'], y.squeeze(), y_pred)
    # Need correct scorers
    rf = ReceptiveField(tmin, tmax, 1., scoring='foo')
    assert_raises(ValueError, rf.fit, X, y)
コード例 #2
0
def test_receptive_field():
    """Test model prep and fitting."""
    from sklearn.linear_model import Ridge
    # Make sure estimator pulling works
    mod = Ridge()

    # Test the receptive field model
    # Define parameters for the model and simulate inputs + weights
    tmin, tmax = -10., 0
    n_feats = 3
    X = rng.randn(10000, n_feats)
    w = rng.randn(int((tmax - tmin) + 1) * n_feats)

    # Delay inputs and cut off first 4 values since they'll be cut in the fit
    X_del = np.concatenate(_delay_time_series(X, tmin, tmax,
                                              1.).transpose(2, 0, 1),
                           axis=1)
    y = np.dot(X_del, w)

    # Fit the model and test values
    feature_names = ['feature_%i' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod)
    rf.fit(X, y)
    assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))

    y_pred = rf.predict(X)
    assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2)
    scores = rf.score(X, y)
    assert_true(scores > .99)
    assert_allclose(rf.coef_.T.ravel(), w, atol=1e-2)
    # Make sure different input shapes work
    rf.fit(X[:, np.newaxis:, ], y[:, np.newaxis])
    rf.fit(X, y[:, np.newaxis])
    assert_raises(ValueError, rf.fit, X[..., np.newaxis], y)
    assert_raises(ValueError, rf.fit, X[:, 0], y)
    assert_raises(ValueError, rf.fit, X[..., np.newaxis],
                  np.tile(y[..., np.newaxis], [2, 1, 1]))
    # stim features must match length of input data
    assert_raises(ValueError, rf.fit, X[:, :1], y)
    # auto-naming features
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
    rf.fit(X, y)
    assert_equal(rf.feature_names, ['feature_%s' % ii for ii in [0, 1, 2]])
    # X/y same n timepoints
    assert_raises(ValueError, rf.fit, X, y[:-2])
    # Float becomes ridge
    rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'], estimator=0)
    str(rf)  # repr works before fit
    rf.fit(X, y)
    assert_true(isinstance(rf.estimator_, TimeDelayingRidge))
    str(rf)  # repr works after fit
    rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0)
    rf.fit(X[:, [0]], y)
    str(rf)  # repr with one feature
    # Should only accept estimators or floats
    rf = ReceptiveField(tmin, tmax, 1, estimator='foo')
    assert_raises(ValueError, rf.fit, X, y)
    rf = ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3]))
    assert_raises(ValueError, rf.fit, X, y)
    # tmin must be <= tmax
    rf = ReceptiveField(5, 4, 1)
    assert_raises(ValueError, rf.fit, X, y)
    # scorers
    for key, val in _SCORERS.items():
        rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0, scoring=key)
        rf.fit(X[:, [0]], y)
        y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis]
        assert_allclose(val(y[:, np.newaxis], y_pred),
                        rf.score(X[:, [0]], y),
                        rtol=1e-2)
    # Need 2D input
    assert_raises(ValueError, _SCORERS['corrcoef'], y.ravel(), y_pred)
    # Need correct scorers
    rf = ReceptiveField(tmin, tmax, 1., scoring='foo')
    assert_raises(ValueError, rf.fit, X, y)
コード例 #3
0
def test_receptive_field(n_jobs):
    """Test model prep and fitting."""
    from sklearn.linear_model import Ridge
    # Make sure estimator pulling works
    mod = Ridge()
    rng = np.random.RandomState(1337)

    # Test the receptive field model
    # Define parameters for the model and simulate inputs + weights
    tmin, tmax = -10., 0
    n_feats = 3
    rng = np.random.RandomState(0)
    X = rng.randn(10000, n_feats)
    w = rng.randn(int((tmax - tmin) + 1) * n_feats)

    # Delay inputs and cut off first 4 values since they'll be cut in the fit
    X_del = np.concatenate(
        _delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1)
    y = np.dot(X_del, w)

    # Fit the model and test values
    feature_names = ['feature_%i' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod,
                        patterns=True)
    rf.fit(X, y)
    assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))

    y_pred = rf.predict(X)
    assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2)
    scores = rf.score(X, y)
    assert scores > .99
    assert_allclose(rf.coef_.T.ravel(), w, atol=1e-3)
    # Make sure different input shapes work
    rf.fit(X[:, np.newaxis:, ], y[:, np.newaxis])
    rf.fit(X, y[:, np.newaxis])
    pytest.raises(ValueError, rf.fit, X[..., np.newaxis], y)
    pytest.raises(ValueError, rf.fit, X[:, 0], y)
    pytest.raises(ValueError, rf.fit, X[..., np.newaxis],
                  np.tile(y[..., np.newaxis], [2, 1, 1]))
    # stim features must match length of input data
    pytest.raises(ValueError, rf.fit, X[:, :1], y)
    # auto-naming features
    feature_names = ['feature_%s' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod,
                        feature_names=feature_names)
    assert_equal(rf.feature_names, feature_names)
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
    rf.fit(X, y)
    assert_equal(rf.feature_names, None)
    # X/y same n timepoints
    pytest.raises(ValueError, rf.fit, X, y[:-2])
    # Float becomes ridge
    rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'],
                        estimator=0, patterns=True)
    str(rf)  # repr works before fit
    rf.fit(X, y)
    assert isinstance(rf.estimator_, TimeDelayingRidge)
    str(rf)  # repr works after fit
    rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0, patterns=True)
    rf.fit(X[:, [0]], y)
    str(rf)  # repr with one feature
    # Should only accept estimators or floats
    rf = ReceptiveField(tmin, tmax, 1, estimator='foo', patterns=True)
    pytest.raises(ValueError, rf.fit, X, y)
    rf = ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3]))
    pytest.raises(ValueError, rf.fit, X, y)
    # tmin must be <= tmax
    rf = ReceptiveField(5, 4, 1, patterns=True)
    pytest.raises(ValueError, rf.fit, X, y)
    # scorers
    for key, val in _SCORERS.items():
        rf = ReceptiveField(tmin, tmax, 1, ['one'],
                            estimator=0, scoring=key, patterns=True)
        rf.fit(X[:, [0]], y)
        y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis]
        assert_allclose(val(y[:, np.newaxis], y_pred,
                            multioutput='raw_values'),
                        rf.score(X[:, [0]], y), rtol=1e-2)
    # Need 2D input
    pytest.raises(ValueError, _SCORERS['corrcoef'], y.ravel(), y_pred,
                  multioutput='raw_values')
    # Need correct scorers
    rf = ReceptiveField(tmin, tmax, 1., scoring='foo')
    pytest.raises(ValueError, rf.fit, X, y)
コード例 #4
0
def test_receptive_field_basic(n_jobs):
    """Test model prep and fitting."""
    from sklearn.linear_model import Ridge
    # Make sure estimator pulling works
    mod = Ridge()
    rng = np.random.RandomState(1337)

    # Test the receptive field model
    # Define parameters for the model and simulate inputs + weights
    tmin, tmax = -10., 0
    n_feats = 3
    rng = np.random.RandomState(0)
    X = rng.randn(10000, n_feats)
    w = rng.randn(int((tmax - tmin) + 1) * n_feats)

    # Delay inputs and cut off first 4 values since they'll be cut in the fit
    X_del = np.concatenate(
        _delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1)
    y = np.dot(X_del, w)

    # Fit the model and test values
    feature_names = ['feature_%i' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod,
                        patterns=True)
    rf.fit(X, y)
    assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))

    y_pred = rf.predict(X)
    assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2)
    scores = rf.score(X, y)
    assert scores > .99
    assert_allclose(rf.coef_.T.ravel(), w, atol=1e-3)
    # Make sure different input shapes work
    rf.fit(X[:, np.newaxis:], y[:, np.newaxis])
    rf.fit(X, y[:, np.newaxis])
    with pytest.raises(ValueError, match='If X has 3 .* y must have 2 or 3'):
        rf.fit(X[..., np.newaxis], y)
    with pytest.raises(ValueError, match='X must be shape'):
        rf.fit(X[:, 0], y)
    with pytest.raises(ValueError, match='X and y do not have the same n_epo'):
        rf.fit(X[:, np.newaxis], np.tile(y[:, np.newaxis, np.newaxis],
                                         [1, 2, 1]))
    with pytest.raises(ValueError, match='X and y do not have the same n_tim'):
        rf.fit(X, y[:-2])
    with pytest.raises(ValueError, match='n_features in X does not match'):
        rf.fit(X[:, :1], y)
    # auto-naming features
    feature_names = ['feature_%s' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod,
                        feature_names=feature_names)
    assert_equal(rf.feature_names, feature_names)
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
    rf.fit(X, y)
    assert_equal(rf.feature_names, None)
    # Float becomes ridge
    rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'], estimator=0)
    str(rf)  # repr works before fit
    rf.fit(X, y)
    assert isinstance(rf.estimator_, TimeDelayingRidge)
    str(rf)  # repr works after fit
    rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0)
    rf.fit(X[:, [0]], y)
    str(rf)  # repr with one feature
    # Should only accept estimators or floats
    with pytest.raises(ValueError, match='`estimator` must be a float or'):
        ReceptiveField(tmin, tmax, 1, estimator='foo').fit(X, y)
    with pytest.raises(ValueError, match='`estimator` must be a float or'):
        ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3])).fit(X, y)
    with pytest.raises(ValueError, match='tmin .* must be at most tmax'):
        ReceptiveField(5, 4, 1).fit(X, y)
    # scorers
    for key, val in _SCORERS.items():
        rf = ReceptiveField(tmin, tmax, 1, ['one'],
                            estimator=0, scoring=key, patterns=True)
        rf.fit(X[:, [0]], y)
        y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis]
        assert_allclose(val(y[:, np.newaxis], y_pred,
                            multioutput='raw_values'),
                        rf.score(X[:, [0]], y), rtol=1e-2)
    with pytest.raises(ValueError, match='inputs must be shape'):
        _SCORERS['corrcoef'](y.ravel(), y_pred, multioutput='raw_values')
    # Need correct scorers
    with pytest.raises(ValueError, match='scoring must be one of'):
        ReceptiveField(tmin, tmax, 1., scoring='foo').fit(X, y)