def test_search_light(): """Test SlidingEstimator.""" from sklearn.linear_model import Ridge, LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.metrics import roc_auc_score, make_scorer from sklearn.ensemble import BaggingClassifier from sklearn.base import is_classifier X, y = make_data() n_epochs, _, n_time = X.shape # init pytest.raises(ValueError, SlidingEstimator, 'foo') sl = SlidingEstimator(Ridge()) assert (not is_classifier(sl)) sl = SlidingEstimator(LogisticRegression()) assert (is_classifier(sl)) # fit assert_equal(sl.__repr__()[:18], '<SlidingEstimator(') sl.fit(X, y) assert_equal(sl.__repr__()[-28:], ', fitted with 10 estimators>') pytest.raises(ValueError, sl.fit, X[1:], y) pytest.raises(ValueError, sl.fit, X[:, :, 0], y) sl.fit(X, y, sample_weight=np.ones_like(y)) # transforms pytest.raises(ValueError, sl.predict, X[:, :, :2]) y_pred = sl.predict(X) assert (y_pred.dtype == int) assert_array_equal(y_pred.shape, [n_epochs, n_time]) y_proba = sl.predict_proba(X) assert (y_proba.dtype == float) assert_array_equal(y_proba.shape, [n_epochs, n_time, 2]) # score score = sl.score(X, y) assert_array_equal(score.shape, [n_time]) assert (np.sum(np.abs(score)) != 0) assert (score.dtype == float) sl = SlidingEstimator(LogisticRegression()) assert_equal(sl.scoring, None) # Scoring method for scoring in ['foo', 999]: sl = SlidingEstimator(LogisticRegression(), scoring=scoring) sl.fit(X, y) pytest.raises((ValueError, TypeError), sl.score, X, y) # Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874 # -- 3 class problem sl = SlidingEstimator(LogisticRegression(random_state=0), scoring='roc_auc') y = np.arange(len(X)) % 3 sl.fit(X, y) pytest.raises(ValueError, sl.score, X, y) # -- 2 class problem not in [0, 1] y = np.arange(len(X)) % 2 + 1 sl.fit(X, y) score = sl.score(X, y) assert_array_equal(score, [ roc_auc_score(y - 1, _y_pred - 1) for _y_pred in sl.decision_function(X).T ]) y = np.arange(len(X)) % 2 # Cannot pass a metric as a scoring parameter sl1 = SlidingEstimator(LogisticRegression(), scoring=roc_auc_score) sl1.fit(X, y) pytest.raises(ValueError, sl1.score, X, y) # Now use string as scoring sl1 = SlidingEstimator(LogisticRegression(), scoring='roc_auc') sl1.fit(X, y) rng = np.random.RandomState(0) X = rng.randn(*X.shape) # randomize X to avoid AUCs in [0, 1] score_sl = sl1.score(X, y) assert_array_equal(score_sl.shape, [n_time]) assert (score_sl.dtype == float) # Check that scoring was applied adequately scoring = make_scorer(roc_auc_score, needs_threshold=True) score_manual = [ scoring(est, x, y) for est, x in zip(sl1.estimators_, X.transpose(2, 0, 1)) ] assert_array_equal(score_manual, score_sl) # n_jobs sl = SlidingEstimator(LogisticRegression(random_state=0), n_jobs=1, scoring='roc_auc') score_1job = sl.fit(X, y).score(X, y) sl.n_jobs = 2 score_njobs = sl.fit(X, y).score(X, y) assert_array_equal(score_1job, score_njobs) sl.predict(X) # n_jobs > n_estimators sl.fit(X[..., [0]], y) sl.predict(X[..., [0]]) # pipeline class _LogRegTransformer(LogisticRegression): # XXX needs transformer in pipeline to get first proba only def transform(self, X): return super(_LogRegTransformer, self).predict_proba(X)[..., 1] pipe = make_pipeline(SlidingEstimator(_LogRegTransformer()), LogisticRegression()) pipe.fit(X, y) pipe.predict(X) # n-dimensional feature space X = np.random.rand(10, 3, 4, 2) y = np.arange(10) % 2 y_preds = list() for n_jobs in [1, 2]: pipe = SlidingEstimator(make_pipeline(Vectorizer(), LogisticRegression()), n_jobs=n_jobs) y_preds.append(pipe.fit(X, y).predict(X)) features_shape = pipe.estimators_[0].steps[0][1].features_shape_ assert_array_equal(features_shape, [3, 4]) assert_array_equal(y_preds[0], y_preds[1]) # Bagging classifiers X = np.random.rand(10, 3, 4) for n_jobs in (1, 2): pipe = SlidingEstimator(BaggingClassifier(None, 2), n_jobs=n_jobs) pipe.fit(X, y) pipe.score(X, y) assert (isinstance(pipe.estimators_[0], BaggingClassifier))
def test_cross_val_multiscore(): """Test cross_val_multiscore for computing scores on decoding over time.""" from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score from sklearn.linear_model import LogisticRegression, LinearRegression if check_version('sklearn', '0.20'): logreg = LogisticRegression(solver='liblinear', random_state=0) else: logreg = LogisticRegression(random_state=0) # compare to cross-val-score X = np.random.rand(20, 3) y = np.arange(20) % 2 cv = KFold(2, random_state=0, shuffle=True) clf = logreg assert_array_equal(cross_val_score(clf, X, y, cv=cv), cross_val_multiscore(clf, X, y, cv=cv)) # Test with search light X = np.random.rand(20, 4, 3) y = np.arange(20) % 2 clf = SlidingEstimator(logreg, scoring='accuracy') scores_acc = cross_val_multiscore(clf, X, y, cv=cv) assert_array_equal(np.shape(scores_acc), [2, 3]) # check values scores_acc_manual = list() for train, test in cv.split(X, y): clf.fit(X[train], y[train]) scores_acc_manual.append(clf.score(X[test], y[test])) assert_array_equal(scores_acc, scores_acc_manual) # check scoring metric # raise an error if scoring is defined at cross-val-score level and # search light, because search light does not return a 1-dimensional # prediction. pytest.raises(ValueError, cross_val_multiscore, clf, X, y, cv=cv, scoring='roc_auc') clf = SlidingEstimator(logreg, scoring='roc_auc') scores_auc = cross_val_multiscore(clf, X, y, cv=cv, n_jobs=1) scores_auc_manual = list() for train, test in cv.split(X, y): clf.fit(X[train], y[train]) scores_auc_manual.append(clf.score(X[test], y[test])) assert_array_equal(scores_auc, scores_auc_manual) # indirectly test that cross_val_multiscore rightly detects the type of # estimator and generates a StratifiedKFold for classiers and a KFold # otherwise X = np.random.randn(1000, 3) y = np.ones(1000, dtype=int) y[::2] = 0 clf = logreg reg = LinearRegression() for cross_val in (cross_val_score, cross_val_multiscore): manual = cross_val(clf, X, y, cv=StratifiedKFold(2)) auto = cross_val(clf, X, y, cv=2) assert_array_equal(manual, auto) manual = cross_val(reg, X, y, cv=KFold(2)) auto = cross_val(reg, X, y, cv=2) assert_array_equal(manual, auto)
def test_search_light(): """Test SlidingEstimator.""" from sklearn.linear_model import Ridge, LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.metrics import roc_auc_score, make_scorer with pytest.warns(None): # NumPy module import from sklearn.ensemble import BaggingClassifier from sklearn.base import is_classifier logreg = LogisticRegression(solver='liblinear', multi_class='ovr', random_state=0) X, y = make_data() n_epochs, _, n_time = X.shape # init pytest.raises(ValueError, SlidingEstimator, 'foo') sl = SlidingEstimator(Ridge()) assert (not is_classifier(sl)) sl = SlidingEstimator(LogisticRegression(solver='liblinear')) assert (is_classifier(sl)) # fit assert_equal(sl.__repr__()[:18], '<SlidingEstimator(') sl.fit(X, y) assert_equal(sl.__repr__()[-28:], ', fitted with 10 estimators>') pytest.raises(ValueError, sl.fit, X[1:], y) pytest.raises(ValueError, sl.fit, X[:, :, 0], y) sl.fit(X, y, sample_weight=np.ones_like(y)) # transforms pytest.raises(ValueError, sl.predict, X[:, :, :2]) y_pred = sl.predict(X) assert (y_pred.dtype == int) assert_array_equal(y_pred.shape, [n_epochs, n_time]) y_proba = sl.predict_proba(X) assert (y_proba.dtype == float) assert_array_equal(y_proba.shape, [n_epochs, n_time, 2]) # score score = sl.score(X, y) assert_array_equal(score.shape, [n_time]) assert (np.sum(np.abs(score)) != 0) assert (score.dtype == float) sl = SlidingEstimator(logreg) assert_equal(sl.scoring, None) # Scoring method for scoring in ['foo', 999]: sl = SlidingEstimator(logreg, scoring=scoring) sl.fit(X, y) pytest.raises((ValueError, TypeError), sl.score, X, y) # Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874 # -- 3 class problem sl = SlidingEstimator(logreg, scoring='roc_auc') y = np.arange(len(X)) % 3 sl.fit(X, y) pytest.raises(ValueError, sl.score, X, y) # -- 2 class problem not in [0, 1] y = np.arange(len(X)) % 2 + 1 sl.fit(X, y) score = sl.score(X, y) assert_array_equal(score, [roc_auc_score(y - 1, _y_pred - 1) for _y_pred in sl.decision_function(X).T]) y = np.arange(len(X)) % 2 # Cannot pass a metric as a scoring parameter sl1 = SlidingEstimator(logreg, scoring=roc_auc_score) sl1.fit(X, y) pytest.raises(ValueError, sl1.score, X, y) # Now use string as scoring sl1 = SlidingEstimator(logreg, scoring='roc_auc') sl1.fit(X, y) rng = np.random.RandomState(0) X = rng.randn(*X.shape) # randomize X to avoid AUCs in [0, 1] score_sl = sl1.score(X, y) assert_array_equal(score_sl.shape, [n_time]) assert (score_sl.dtype == float) # Check that scoring was applied adequately scoring = make_scorer(roc_auc_score, needs_threshold=True) score_manual = [scoring(est, x, y) for est, x in zip( sl1.estimators_, X.transpose(2, 0, 1))] assert_array_equal(score_manual, score_sl) # n_jobs sl = SlidingEstimator(logreg, n_jobs=1, scoring='roc_auc') score_1job = sl.fit(X, y).score(X, y) sl.n_jobs = 2 score_njobs = sl.fit(X, y).score(X, y) assert_array_equal(score_1job, score_njobs) sl.predict(X) # n_jobs > n_estimators sl.fit(X[..., [0]], y) sl.predict(X[..., [0]]) # pipeline class _LogRegTransformer(LogisticRegression): # XXX needs transformer in pipeline to get first proba only def __init__(self): super(_LogRegTransformer, self).__init__() self.multi_class = 'ovr' self.random_state = 0 self.solver = 'liblinear' def transform(self, X): return super(_LogRegTransformer, self).predict_proba(X)[..., 1] pipe = make_pipeline(SlidingEstimator(_LogRegTransformer()), logreg) pipe.fit(X, y) pipe.predict(X) # n-dimensional feature space X = np.random.rand(10, 3, 4, 2) y = np.arange(10) % 2 y_preds = list() for n_jobs in [1, 2]: pipe = SlidingEstimator( make_pipeline(Vectorizer(), logreg), n_jobs=n_jobs) y_preds.append(pipe.fit(X, y).predict(X)) features_shape = pipe.estimators_[0].steps[0][1].features_shape_ assert_array_equal(features_shape, [3, 4]) assert_array_equal(y_preds[0], y_preds[1]) # Bagging classifiers X = np.random.rand(10, 3, 4) for n_jobs in (1, 2): pipe = SlidingEstimator(BaggingClassifier(None, 2), n_jobs=n_jobs) pipe.fit(X, y) pipe.score(X, y) assert (isinstance(pipe.estimators_[0], BaggingClassifier))