コード例 #1
0
def mne_plot_source_estimation(sbj,
                               sbj_dir,
                               fwd_file,
                               stc_file=None,
                               hemisphere='both',
                               parc='aparc',
                               active_data=0,
                               kw_brain_obj={},
                               kw_source_obj={},
                               kw_activation={},
                               show=True):
    """Plot source estimation.

    Parameters
    ----------
    sbj : string
        The subject name.
    sbj_dir : string
        Path to the subject directory.
    fwd_file : string
        The file name of the forward solution, which should end with -fwd.fif
        or -fwd.fif.gz.
    stc_file : string | None
        Path to the .stc inverse solution file.
    hemisphere : {'left', 'both', 'right'}
        The hemisphere to plot.
    parc : string | 'aparc'
        The parcellation to use, e.g., ‘aparc’ or ‘aparc.a2009s’.
    active_data : array_like, int | 0
        The data to set to vertices. If an stc file is provided and if
        `active_data` is an integer, it describes the time instant in which you
        want to see the activation. Otherwise, `active_data` must be an array
        with the same same shape as the number of active vertices.
    kw_brain_obj : dict | {}
        Additional inputs to pass to the :class:`visbrain.objects.BrainObj`
        class.
    kw_source_obj : dict | {}
        Additional inputs to pass to the :class:`visbrain.objects.SourceObj`
        class.
    kw_activation : dict | {}
        Additional inputs to pass to the
        :class:`visbrain.objects.BrainObj.add_activation` method.
    show : bool | False
        If True, the window of the :class:`visbrain.Brain` module is
        automatically displayed. If False, a :class:`visbrain.objects.BrainObj`
        and a :class:`visbrain.objects.SourceObj` are returned. Finally, if
        'scene'a :class:`visbrain.objects.SceneObj` is returned.

    Returns
    -------
    b_obj : BrainObj
        A predefined :class:`visbrain.objects.BrainObj` (if `show=False`)
    s_obj : SourceObj
        A predefined :class:`visbrain.objects.SourceObj`, hide by default (if
        `show=False`)
    """
    # Test that mne is installed and import :
    is_mne_installed(raise_error=True)
    import mne
    from mne.source_space import head_to_mni
    # Read the forward solution :
    fwd = mne.read_forward_solution(fwd_file)
    logger.debug('Read the forward solution')
    # Get source space :
    fwd_src = fwd['src']
    # Get the MRI (surface RAS)-> head matrix
    mri_head_t = fwd['mri_head_t']
    # Extract arrays from src structure :
    (vertices, faces, lr_index, active_vert,
     sources) = _extract_arrays_from_src(fwd_src, hemisphere)
    # Head to MNI conversion
    logger.info("Head to MNI conversion")
    vertices = head_to_mni(vertices, sbj, mri_head_t, subjects_dir=sbj_dir)
    sources = head_to_mni(sources, sbj, mri_head_t, subjects_dir=sbj_dir)
    # Add data to the mesh :
    if isinstance(active_data, np.ndarray):
        if len(active_data) != len(active_vert):
            logger.error("The length of `active data` (%i) must be the same "
                         "the length of the number of active vertices "
                         "(%i)" % (len(active_data), len(active_vert)))
            active_data = active_vert = None
        else:
            logger.info("Array of active data used.")
    elif isinstance(stc_file, str) and isinstance(active_data, int):
        # Get active data :
        assert os.path.isfile(stc_file)
        n_tp = active_data
        data = mne.read_source_estimate(stc_file).data
        active_data = np.abs(data[:, n_tp] / data[:, n_tp].max())
        logger.info("Time instant %i used for activation" % n_tp)
    else:
        logger.info("No active data detected.")
        active_data = active_vert = None
    # Complete dicts :
    kw_brain_obj['vertices'], kw_brain_obj['faces'] = vertices, faces
    kw_brain_obj['lr_index'], kw_brain_obj['hemisphere'] = lr_index, hemisphere
    return _plt_src(sbj, kw_brain_obj, active_data, active_vert, sources,
                    kw_source_obj, kw_activation, show)
コード例 #2
0
def test_dipole_fitting(tmpdir):
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = str(tmpdir)
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False,
                                   force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [
        np.sort(rng.permutation(s['vertno'])[:n_per_hemi]) for s in fwd['src']
    ]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd,
                             stc,
                             evoked.info,
                             cov,
                             nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate([
            pick_types(evoked.info, meg=True, eeg=False)[::2],
            pick_types(evoked.info, meg=False, eeg=True)[::2]
        ]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit',
        '--meas',
        fname_sim,
        '--meg',
        '--eeg',
        '--noise',
        fname_cov,
        '--dip',
        fname_dtemp,
        '--mri',
        fname_fwd,
        '--reg',
        '0',
        '--tmin',
        '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd,
                                   rank='info')  # just to test rank support
    assert isinstance(residual, Evoked)

    # Test conversion of dip.pos to MNI coordinates.
    dip_mni_pos = dip.to_mni('sample', fname_trans, subjects_dir=subjects_dir)
    head_to_mni_dip_pos = head_to_mni(dip.pos,
                                      'sample',
                                      fwd['mri_head_t'],
                                      subjects_dir=subjects_dir)
    assert_allclose(dip_mni_pos, head_to_mni_dip_pos, rtol=1e-3, atol=0)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data**2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data**2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert fwd['src'][0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [
            180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))
        ]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude)**2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
コード例 #3
0
ファイル: plot_mne.py プロジェクト: EtienneCmb/visbrain
def mne_plot_source_estimation(sbj, sbj_dir, fwd_file, stc_file=None,
                               hemisphere='both', parc='aparc', active_data=0,
                               kw_brain_obj={}, kw_source_obj={},
                               kw_activation={}, show=True):
    """Plot source estimation.

    Parameters
    ----------
    sbj : string
        The subject name.
    sbj_dir : string
        Path to the subject directory.
    fwd_file : string
        The file name of the forward solution, which should end with -fwd.fif
        or -fwd.fif.gz.
    stc_file : string | None
        Path to the .stc inverse solution file.
    hemisphere : {'left', 'both', 'right'}
        The hemisphere to plot.
    parc : string | 'aparc'
        The parcellation to use, e.g., ‘aparc’ or ‘aparc.a2009s’.
    active_data : array_like, int | 0
        The data to set to vertices. If an stc file is provided and if
        `active_data` is an integer, it describes the time instant in which you
        want to see the activation. Otherwise, `active_data` must be an array
        with the same same shape as the number of active vertices.
    kw_brain_obj : dict | {}
        Additional inputs to pass to the :class:`visbrain.objects.BrainObj`
        class.
    kw_source_obj : dict | {}
        Additional inputs to pass to the :class:`visbrain.objects.SourceObj`
        class.
    kw_activation : dict | {}
        Additional inputs to pass to the
        :class:`visbrain.objects.BrainObj.add_activation` method.
    show : bool | False
        If True, the window of the :class:`visbrain.Brain` module is
        automatically displayed. If False, a :class:`visbrain.objects.BrainObj`
        and a :class:`visbrain.objects.SourceObj` are returned. Finally, if
        'scene'a :class:`visbrain.objects.SceneObj` is returned.

    Returns
    -------
    b_obj : BrainObj
        A predefined :class:`visbrain.objects.BrainObj` (if `show=False`)
    s_obj : SourceObj
        A predefined :class:`visbrain.objects.SourceObj`, hide by default (if
        `show=False`)
    """
    # Test that mne is installed and import :
    is_mne_installed(raise_error=True)
    import mne
    from mne.source_space import head_to_mni
    # Read the forward solution :
    fwd = mne.read_forward_solution(fwd_file)
    logger.debug('Read the forward solution')
    # Get source space :
    fwd_src = fwd['src']
    # Get the MRI (surface RAS)-> head matrix
    mri_head_t = fwd['mri_head_t']
    # Extract arrays from src structure :
    (vertices, faces, lr_index, active_vert,
     sources) = _extract_arrays_from_src(fwd_src, hemisphere)
    # Head to MNI conversion
    logger.info("    Head to MNI conversion")
    vertices = head_to_mni(vertices, sbj, mri_head_t, subjects_dir=sbj_dir)
    sources = head_to_mni(sources, sbj, mri_head_t, subjects_dir=sbj_dir)
    # Add data to the mesh :
    if isinstance(active_data, np.ndarray):
        if len(active_data) != len(active_vert):
            logger.error("The length of `active data` (%i) must be the same "
                         "the length of the number of active vertices "
                         "(%i)" % (len(active_data), len(active_vert)))
            active_data = active_vert = None
        else:
            logger.info("    Array of active data used.")
    elif isinstance(stc_file, str) and isinstance(active_data, int):
        # Get active data :
        assert os.path.isfile(stc_file)
        n_tp = active_data
        data = mne.read_source_estimate(stc_file).data
        active_data = np.abs(data[:, n_tp] / data[:, n_tp].max())
        logger.info("    Time instant %i used for activation" % n_tp)
    else:
        logger.info("    No active data detected.")
        active_data = active_vert = None
    # Complete dicts :
    kw_brain_obj['vertices'], kw_brain_obj['faces'] = vertices, faces
    kw_brain_obj['lr_index'], kw_brain_obj['hemisphere'] = lr_index, hemisphere
    return _plt_src(sbj, kw_brain_obj, active_data, active_vert, sources,
                    kw_source_obj, kw_activation, show)
コード例 #4
0
ファイル: plot_fwd.py プロジェクト: CoastSunny/visbrain
def mne_plot_source_estimation(sbj,
                               sbj_dir,
                               fwd_file,
                               stc_file=None,
                               hemisphere='both',
                               parc='aparc',
                               active_data=0,
                               kw_brain_obj={},
                               kw_source_obj={},
                               kw_activation={},
                               show=True):
    """Plot source estimation.

    Parameters
    ----------
    sbj : string
        The subject name.
    sbj_dir : string
        Path to the subject directory.
    fwd_file : string
        The file name of the forward solution, which should end with -fwd.fif
        or -fwd.fif.gz.
    stc_file : string | None
        Path to the *.stc inverse solution file.
    hemisphere : {'left', 'both', 'right'}
        The hemisphere to plot.
    parc : string | 'aparc'
        The parcellation to use, e.g., ‘aparc’ or ‘aparc.a2009s’.
    active_data : array_like, int | 0
        The data to set to vertices. If an stc file is provided and if
        `active_data` is an integer, it describes the time instant in which you
        want to see the activation. Otherwise, `active_data` must be an array
        with the same same shape as the number of active vertices.
    kw_brain_obj : dict | {}
        Additional inputs to pass to the `BrainObj` class.
    kw_source_obj : dict | {}
        Additional inputs to pass to the `SourceObj` class.
    kw_activation : dict | {}
        Additional inputs to pass to the `BrainObj.add_activation` method.
    show : bool | False
        If True, the window of the `Brain` module is automatically displayed.
        If False, a BrainObj and a SourceObj are returned. Finally, if 'scene'
        a SceneObj is returned.

    Returns
    -------
    b_obj : BrainObj
        A predefined `BrainObj` (if `show=False`)
    s_obj : SourceObj
        A predefined `SourceObj`, hide by default (if `show=False`)
    """
    # Test that mne is installed and import :
    is_mne_installed(raise_error=True)
    import mne
    from mne.source_space import head_to_mni
    hemi_idx = {'left': [0], 'right': [1], 'both': [0, 1]}[hemisphere]
    # Read the forward solution :
    fwd = mne.read_forward_solution(fwd_file)
    logger.debug('Read the forward solution')
    # Get source space :
    fwd_src = fwd['src']
    # Get the MRI (surface RAS)-> head matrix
    mri_head_t = fwd['mri_head_t']
    # Head to MNI conversion
    logger.info("Head to MNI conversion")
    mesh, sources = [], []
    for hemi in hemi_idx:
        vert_ = fwd_src[hemi]['rr']
        sources_ = fwd_src[hemi]['rr'][fwd_src[hemi]['vertno']]
        m_ = head_to_mni(vert_, sbj, mri_head_t, subjects_dir=sbj_dir)
        s_ = head_to_mni(sources_, sbj, mri_head_t, subjects_dir=sbj_dir)
        mesh.append(m_)
        sources.append(s_)
    # Get active vertices :
    # fwd_src contains the source spaces, the first 2 are the cortex
    # (left and right hemi, the others are related to the substructures)
    if len(hemi_idx) == 1:
        active_vert = fwd_src[hemi_idx[0]]['vertno']
    else:
        active_left = fwd_src[0]['vertno']
        active_right = fwd_src[1]['vertno'] + mesh[0].shape[0]
        active_vert = np.r_[active_left, active_right]
    logger.info('%i active vertices detected ' % len(active_vert))
    # Add data to the mesh :
    if isinstance(active_data, np.ndarray):
        if len(active_data) != len(active_vert):
            logger.error("The length of `active data` (%i) must be the same "
                         "the length of the number of active vertices "
                         "(%i)" % (len(active_data), len(active_vert)))
            active_data = active_vert = None
        else:
            logger.info("Array of active data used.")
    elif isinstance(stc_file, str) and isinstance(active_data, int):
        # Get active data :
        assert os.path.isfile(stc_file)
        n_tp = active_data
        data = mne.read_source_estimate(stc_file).data
        active_data = np.abs(data[:, n_tp] / data[:, n_tp].max())
        logger.info("Time instant %i used for activation" % n_tp)
    else:
        logger.info("No active data detected.")
        active_data = active_vert = None
    # Concatenate vertices, faces and sources :
    vertices = np.concatenate(mesh)
    lr_index = np.r_[np.ones((len(mesh[0]), )), np.zeros((len(mesh[1]), ))]
    sources = np.concatenate(sources)
    # Get faces :
    if len(hemi_idx) == 1:
        faces = fwd_src[hemi_idx[0]]['tris']
    else:
        _faces_l = fwd_src[0]['tris']
        _faces_r = fwd_src[1]['tris'] + _faces_l.max() + 1
        faces = np.r_[_faces_l, _faces_r].astype(int)
    # Define a brain object and a source object :
    logger.info('Define a Brain and Source objects')
    from visbrain.objects import BrainObj, SourceObj, SceneObj
    b_obj = BrainObj(sbj + '_brain',
                     vertices=vertices,
                     faces=faces,
                     lr_index=lr_index.astype(bool),
                     **kw_brain_obj)
    s_obj = SourceObj(sbj + '_src', sources, visible=False, **kw_source_obj)
    # Add data to the BrainObj if needed :
    if isinstance(active_data, np.ndarray):
        logger.info("Add active data between "
                    "[%2f, %2f]" % (active_data.min(), active_data.max()))
        b_obj.add_activation(data=active_data,
                             vertices=active_vert,
                             **kw_activation)
    # Return either a scene or a BrainObj and SourceObj :
    if show:  # Display inside the Brain GUI
        # Define a Brain instance :
        from visbrain import Brain
        brain = Brain(brain_obj=b_obj, source_obj=s_obj)
        # Remove all brain templates except the one of the subject :
        brain._brain_template.setEnabled(False)
        # By default, display colorbar if activation :
        if isinstance(active_data, np.ndarray):
            brain.menuDispCbar.setChecked(True)
            brain._fcn_menu_disp_cbar()
        brain.show()
    elif show is 'scene':  # return a SceneObj
        logger.info('Define a unique scene for the Brain and Source objects')
        sc = SceneObj()
        sc.add_to_subplot(s_obj)
        sc.add_to_subplot(b_obj, use_this_cam=True)
        return sc
    else:  # return the BrainObj and SourceObj
        return b_obj, s_obj