# plot the results. # Get Landmarks from MEG file, 0, 1, and 2 correspond to LPA, NAS, RPA # and the 'r' key will provide us with the xyz coordinates pos = np.asarray((raw.info['dig'][0]['r'], raw.info['dig'][1]['r'], raw.info['dig'][2]['r'])) # We use a function from MNE-Python to convert MEG coordinates to MRI space # for the conversion we use our estimated transformation matrix and the # MEG coordinates extracted from the raw file. `subjects` and `subjects_dir` # are used internally, to point to the T1-weighted MRI file: `t1_mgh_fname` mri_pos = head_to_mri(pos=pos, subject='sample', mri_head_t=estim_trans, subjects_dir=op.join(data_path, 'subjects') ) # Our MRI written to BIDS, we got `anat_dir` from our `write_anat` function t1_nii_fname = op.join(anat_dir, 'sub-01_ses-01_T1w.nii.gz') # Plot it fig, axs = plt.subplots(3, 1) for point_idx, label in enumerate(('LPA', 'NAS', 'RPA')): plot_anat(t1_nii_fname, axes=axs[point_idx], cut_coords=mri_pos[point_idx, :], title=label) plt.show() ###############################################################################
pos = np.asarray( (raw.info['dig'][0]['r'], raw.info['dig'][1]['r'], raw.info['dig'][2]['r'])) bids_fname = bids_basename + '_meg.fif' estim_trans = get_head_mri_trans( bids_fname=bids_fname, # name of the MEG file bids_root=bids_root # root of our BIDS dir ) # We use a function from MNE-Python to convert MEG coordinates to MRI space # for the conversion we use our estimated transformation matrix and the # MEG coordinates extracted from the raw file. `subjects` and `subjects_dir` # are used internally, to point to the T1-weighted MRI file: `t1_mgh_fname` mri_pos = head_to_mri(pos=pos, subject=subject, mri_head_t=estim_trans, subjects_dir=subjects_dir) # Our MRI written to BIDS, we got `anat_dir` from our `write_anat` function t1_nii_fname = op.join( anat_dir, 'sub-' + subject + '_acq-t1w_T1w.nii.gz') # sub-SB01_acq-t1w_T1w # Plot it fig, axs = plt.subplots(3, 1) for point_idx, label in enumerate(('LPA', 'NAS', 'RPA')): plot_anat(t1_nii_fname, axes=axs[point_idx], cut_coords=mri_pos[point_idx, :], title=label) plt.show()