コード例 #1
0
ファイル: test_tfr.py プロジェクト: starzynski/mne-python
def test_time_frequency():
    """Test time frequency transform (PSD and phase lock)
    """
    # Set parameters
    event_id = 1
    tmin = -0.2
    tmax = 0.5

    # Setup for reading the raw data
    raw = fiff.Raw(raw_fname)
    events = read_events(event_fname)

    include = []
    exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053']  # bads + 2 more

    # picks MEG gradiometers
    picks = fiff.pick_types(raw.info, meg='grad', eeg=False,
                            stim=False, include=include, exclude=exclude)

    picks = picks[:2]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0))
    data = epochs.get_data()
    times = epochs.times

    frequencies = np.arange(6, 20, 5)  # define frequencies of interest
    Fs = raw.info['sfreq']  # sampling in Hz
    n_cycles = frequencies / float(4)
    power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                      n_cycles=n_cycles, use_fft=True)

    assert_true(power.shape == (len(picks), len(frequencies), len(times)))
    assert_true(power.shape == phase_lock.shape)
    assert_true(np.sum(phase_lock >= 1) == 0)
    assert_true(np.sum(phase_lock <= 0) == 0)

    power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                       n_cycles=2, use_fft=False)

    assert_true(power.shape == (len(picks), len(frequencies), len(times)))
    assert_true(power.shape == phase_lock.shape)
    assert_true(np.sum(phase_lock >= 1) == 0)
    assert_true(np.sum(phase_lock <= 0) == 0)

    tfr = cwt_morlet(data[0], Fs, frequencies, use_fft=True, n_cycles=2)
    assert_true(tfr.shape == (len(picks), len(frequencies), len(times)))

    single_power = single_trial_power(data, Fs, frequencies, use_fft=False,
                                      n_cycles=2)

    assert_array_almost_equal(np.mean(single_power), power)
コード例 #2
0
def test_time_frequency():
    """Test time frequency transform (PSD and phase lock)
    """
    # Set parameters
    event_id = 1
    tmin = -0.2
    tmax = 0.5

    # Setup for reading the raw data
    raw = io.Raw(raw_fname)
    events = read_events(event_fname)

    include = []
    exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053']  # bads + 2 more

    # picks MEG gradiometers
    picks = pick_types(raw.info, meg='grad', eeg=False,
                            stim=False, include=include, exclude=exclude)

    picks = picks[:2]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0))
    data = epochs.get_data()
    times = epochs.times

    frequencies = np.arange(6, 20, 5)  # define frequencies of interest
    Fs = raw.info['sfreq']  # sampling in Hz
    n_cycles = frequencies / float(4)
    power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                      n_cycles=n_cycles, use_fft=True)

    assert_true(power.shape == (len(picks), len(frequencies), len(times)))
    assert_true(power.shape == phase_lock.shape)
    assert_true(np.sum(phase_lock >= 1) == 0)
    assert_true(np.sum(phase_lock <= 0) == 0)

    power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                      n_cycles=2, use_fft=False)

    assert_true(power.shape == (len(picks), len(frequencies), len(times)))
    assert_true(power.shape == phase_lock.shape)
    assert_true(np.sum(phase_lock >= 1) == 0)
    assert_true(np.sum(phase_lock <= 0) == 0)

    tfr = cwt_morlet(data[0], Fs, frequencies, use_fft=True, n_cycles=2)
    assert_true(tfr.shape == (len(picks), len(frequencies), len(times)))

    single_power = single_trial_power(data, Fs, frequencies, use_fft=False,
                                      n_cycles=2)

    assert_array_almost_equal(np.mean(single_power), power)
コード例 #3
0
def normSignal(grid,frequencies = None,nc=None,dec=None,events=None):
    """Returns normalised power spectrums for events (using morlet wavelets) [n_epochs,n_channels,n_frequencies]
    frequencies -- Morlet frequencies
    nc -- Number of cycles (DEFAULT 12*np.arange(1,len(frequencies)+1) #Linear formula [Chan,Baker et al. JNS 2011])
    Dec -- Decimation factor
    Events - events to find power of"""
    
    if frequencies is None:
        frequencies = np.arange(1,101)
    if nc is None:
        nc = 0.12*np.arange(1,len(frequencies)+1) #Linear formula [Chan,Baker et al. JNS 2011]
        print nc
    if dec is None:
        dec = 1
    if events is None:
        events=grid.event_matrix()
        events = events[events['event.code']==5] #Use ISIs as baseline
     
    #Pre allocate power matrix for efficiency
    pows = np.zeros([len(events),len(grid.wc()),len(frequencies)])
        
    for j,chan in enumerate(grid.wc()):
        for i,(on,off) in enumerate(events[['pulse.on','pulse.off']].values):
            logger.info( 'Normalising power on channel '+chan+' baseline event '+str(i+1)+'/'+str(len(events)))
            data = grid.splice(grid.wd()[chan],times=[on,off])[None,None,:]
            data = np.vstack([data,data]) #mne doesn't allow only 1 event so duplicate the same event (which will then be averaged)
            p,phase=mtf.induced_power(data, Fs=grid.fs(), frequencies=frequencies, use_fft=False, n_cycles=nc, decim=dec, n_jobs=1,normFreqs=None)
            pows[i,j,:]=p.mean(axis=2).squeeze() #Take average across time for each frequency
    return pows
コード例 #4
0
def morlet(grid,dec=None,frequencies=None,fs=None,events=None,nc=None,normFreqs=None):
    #Performs a morlet wavelet analysis across events

    if events is None:
        events = grid.event_matrix()
    if fs is None:
        fs = grid.fs()
    if dec is None:
        dec = 1
    if frequencies is None:
        frequencies= np.arange(1,101,dec)
    if nc is None:
        nc = 0.12*np.arange(1,len(frequencies)+1)
        print nc
        
    sigs = grid.wd()
    maxtimediff = (events['pulse.off']-events['pulse.on']).max()
    maxtimepoints =  round(maxtimediff*fs)+1
    data = np.zeros([len(events),len(grid.wc()),maxtimepoints])
    
    for k,chan in enumerate(grid.wc()):
        for j,(on,off) in enumerate(events.values):
            print 'Pre-processing Channel:'+chan + ' | Event '+str(j)+'/'+str(len(events.values))
            d=grid.splice(sigs[chan], times=[on,off])
            data[j,k,:len(d)] = d
    pows,phase=mtf.induced_power(data, Fs=float(fs), frequencies=frequencies, use_fft=False, n_cycles=nc, decim=dec, n_jobs=1,normFreqs=normFreqs)   
    return pows,phase
コード例 #5
0
def test_compute_epochs_csd():
    """Test computing cross-spectral density from epochs
    """
    epochs, epochs_sin = _get_data()
    # Check that wrong parameters are recognized
    assert_raises(ValueError, compute_epochs_csd, epochs, mode="notamode")
    assert_raises(ValueError, compute_epochs_csd, epochs, fmin=20, fmax=10)
    assert_raises(ValueError, compute_epochs_csd, epochs, fmin=20, fmax=20.1)
    assert_raises(ValueError, compute_epochs_csd, epochs, tmin=0.15, tmax=0.1)
    assert_raises(ValueError, compute_epochs_csd, epochs, tmin=0, tmax=10)
    assert_raises(ValueError, compute_epochs_csd, epochs, tmin=10, tmax=11)

    data_csd_mt = compute_epochs_csd(epochs, mode="multitaper", fmin=8, fmax=12, tmin=0.04, tmax=0.15)
    data_csd_fourier = compute_epochs_csd(epochs, mode="fourier", fmin=8, fmax=12, tmin=0.04, tmax=0.15)

    # Check shape of the CSD matrix
    n_chan = len(data_csd_mt.ch_names)
    assert_equal(data_csd_mt.data.shape, (n_chan, n_chan))
    assert_equal(data_csd_fourier.data.shape, (n_chan, n_chan))

    # Check if the CSD matrix is hermitian
    assert_array_equal(np.tril(data_csd_mt.data).T.conj(), np.triu(data_csd_mt.data))
    assert_array_equal(np.tril(data_csd_fourier.data).T.conj(), np.triu(data_csd_fourier.data))

    # Computing induced power for comparison
    epochs.crop(tmin=0.04, tmax=0.15)
    power, _ = induced_power(epochs.get_data(), epochs.info["sfreq"], [10], n_cycles=0.6)
    power = np.mean(power, 2)

    # Maximum PSD should occur for specific channel
    max_ch_power = power.argmax()
    max_ch_mt = data_csd_mt.data.diagonal().argmax()
    max_ch_fourier = data_csd_fourier.data.diagonal().argmax()
    assert_equal(max_ch_mt, max_ch_power)
    assert_equal(max_ch_fourier, max_ch_power)

    # Maximum CSD should occur for specific channel
    ch_csd_mt = [np.abs(data_csd_mt.data[max_ch_power][i]) if i != max_ch_power else 0 for i in range(n_chan)]
    max_ch_csd_mt = np.argmax(ch_csd_mt)
    ch_csd_fourier = [np.abs(data_csd_fourier.data[max_ch_power][i]) if i != max_ch_power else 0 for i in range(n_chan)]
    max_ch_csd_fourier = np.argmax(ch_csd_fourier)
    assert_equal(max_ch_csd_mt, max_ch_csd_fourier)

    # Check a list of CSD matrices is returned for multiple frequencies within
    # a given range when fsum=False
    csd_fsum = compute_epochs_csd(epochs, mode="fourier", fmin=8, fmax=20, fsum=True)
    csds = compute_epochs_csd(epochs, mode="fourier", fmin=8, fmax=20, fsum=False)
    freqs = [csd.frequencies[0] for csd in csds]

    csd_sum = np.zeros_like(csd_fsum.data)
    for csd in csds:
        csd_sum += csd.data

    assert len(csds) == 2
    assert len(csd_fsum.frequencies) == 2
    assert_array_equal(csd_fsum.frequencies, freqs)
    assert_array_equal(csd_fsum.data, csd_sum)
コード例 #6
0
def normSignal(grid, frequencies=None, nc=None, dec=None, events=None):
    """Returns normalised power spectrums for events (using morlet wavelets) [n_epochs,n_channels,n_frequencies]
    frequencies -- Morlet frequencies
    nc -- Number of cycles (DEFAULT 12*np.arange(1,len(frequencies)+1) #Linear formula [Chan,Baker et al. JNS 2011])
    Dec -- Decimation factor
    Events - events to find power of"""

    if frequencies is None:
        frequencies = np.arange(1, 101)
    if nc is None:
        nc = 0.12 * np.arange(
            1,
            len(frequencies) + 1)  #Linear formula [Chan,Baker et al. JNS 2011]
        print nc
    if dec is None:
        dec = 1
    if events is None:
        events = grid.event_matrix()
        events = events[events['event.code'] == 5]  #Use ISIs as baseline

    #Pre allocate power matrix for efficiency
    pows = np.zeros([len(events), len(grid.wc()), len(frequencies)])

    for j, chan in enumerate(grid.wc()):
        for i, (on, off) in enumerate(events[['pulse.on',
                                              'pulse.off']].values):
            logger.info('Normalising power on channel ' + chan +
                        ' baseline event ' + str(i + 1) + '/' +
                        str(len(events)))
            data = grid.splice(grid.wd()[chan], times=[on, off])[None, None, :]
            data = np.vstack(
                [data, data]
            )  #mne doesn't allow only 1 event so duplicate the same event (which will then be averaged)
            p, phase = mtf.induced_power(data,
                                         Fs=grid.fs(),
                                         frequencies=frequencies,
                                         use_fft=False,
                                         n_cycles=nc,
                                         decim=dec,
                                         n_jobs=1,
                                         normFreqs=None)
            pows[i, j, :] = p.mean(
                axis=2).squeeze()  #Take average across time for each frequency
    return pows
コード例 #7
0
times = 1e3 * epochs.times  # change unit to ms
evoked_data = evoked.data * 1e13  # change unit to fT / cm

# Take only one channel
data = data[:, 97:98, :]
evoked_data = evoked_data[97:98, :]

frequencies = np.arange(7, 30, 3)  # define frequencies of interest
n_cycles = frequencies / float(7)  # different number of cycle per frequency
Fs = raw.info['sfreq']  # sampling in Hz
decim = 3
power, phase_lock = induced_power(data,
                                  Fs=Fs,
                                  frequencies=frequencies,
                                  n_cycles=n_cycles,
                                  n_jobs=1,
                                  use_fft=False,
                                  decim=decim,
                                  zero_mean=True)

# baseline corrections with ratio
power /= np.mean(power[:, :, times[::decim] < 0], axis=2)[:, :, None]

###############################################################################
# View time-frequency plots
import matplotlib.pyplot as plt

plt.clf()
plt.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.63)
plt.subplot(3, 1, 1)
plt.plot(times, evoked_data.T)
コード例 #8
0
def test_compute_epochs_csd():
    """Test computing cross-spectral density from epochs
    """
    epochs, epochs_sin = _get_data()
    # Check that wrong parameters are recognized
    assert_raises(ValueError, compute_epochs_csd, epochs, mode='notamode')
    assert_raises(ValueError, compute_epochs_csd, epochs, fmin=20, fmax=10)
    assert_raises(ValueError, compute_epochs_csd, epochs, fmin=20, fmax=20.1)
    assert_raises(ValueError, compute_epochs_csd, epochs, tmin=0.15, tmax=0.1)
    assert_raises(ValueError, compute_epochs_csd, epochs, tmin=0, tmax=10)
    assert_raises(ValueError, compute_epochs_csd, epochs, tmin=10, tmax=11)

    data_csd_mt = compute_epochs_csd(epochs, mode='multitaper', fmin=8,
                                     fmax=12, tmin=0.04, tmax=0.15)
    data_csd_fourier = compute_epochs_csd(epochs, mode='fourier', fmin=8,
                                          fmax=12, tmin=0.04, tmax=0.15)

    # Check shape of the CSD matrix
    n_chan = len(data_csd_mt.ch_names)
    assert_equal(data_csd_mt.data.shape, (n_chan, n_chan))
    assert_equal(data_csd_fourier.data.shape, (n_chan, n_chan))

    # Check if the CSD matrix is hermitian
    assert_array_equal(np.tril(data_csd_mt.data).T.conj(),
                       np.triu(data_csd_mt.data))
    assert_array_equal(np.tril(data_csd_fourier.data).T.conj(),
                       np.triu(data_csd_fourier.data))

    # Computing induced power for comparison
    epochs.crop(tmin=0.04, tmax=0.15)
    power, _ = induced_power(epochs.get_data(), epochs.info['sfreq'], [10],
                             n_cycles=0.6)
    power = np.mean(power, 2)

    # Maximum PSD should occur for specific channel
    max_ch_power = power.argmax()
    max_ch_mt = data_csd_mt.data.diagonal().argmax()
    max_ch_fourier = data_csd_fourier.data.diagonal().argmax()
    assert_equal(max_ch_mt, max_ch_power)
    assert_equal(max_ch_fourier, max_ch_power)

    # Maximum CSD should occur for specific channel
    ch_csd_mt = [np.abs(data_csd_mt.data[max_ch_power][i])
                 if i != max_ch_power else 0 for i in range(n_chan)]
    max_ch_csd_mt = np.argmax(ch_csd_mt)
    ch_csd_fourier = [np.abs(data_csd_fourier.data[max_ch_power][i])
                      if i != max_ch_power else 0 for i in range(n_chan)]
    max_ch_csd_fourier = np.argmax(ch_csd_fourier)
    assert_equal(max_ch_csd_mt, max_ch_csd_fourier)

    # Check a list of CSD matrices is returned for multiple frequencies within
    # a given range when fsum=False
    csd_fsum = compute_epochs_csd(epochs, mode='fourier', fmin=8, fmax=20,
                                  fsum=True)
    csds = compute_epochs_csd(epochs, mode='fourier', fmin=8, fmax=20,
                              fsum=False)
    freqs = [csd.frequencies[0] for csd in csds]

    csd_sum = np.zeros_like(csd_fsum.data)
    for csd in csds:
        csd_sum += csd.data

    assert(len(csds) == 2)
    assert(len(csd_fsum.frequencies) == 2)
    assert_array_equal(csd_fsum.frequencies, freqs)
    assert_array_equal(csd_fsum.data, csd_sum)
コード例 #9
0
                        tmax=2.5,
                        baseline=(-0.5, 0.0),
                        reject=dict(eeg=200e-6))

    # Calculate power, plv
    Fs = raw.info['sfreq']
    times = epochs.times
    plv = np.zeros((len(conds), len(freqs), len(times)))
    tfspec = np.zeros((len(conds), len(freqs), len(times)))

    condorder = np.zeros(len(conds))  # To save the order in which they come
    for condind, cond in enumerate(condstr):
        dat = epochs[cond].get_data()[:, ch, :].mean(axis=1, keepdims=True)
        powtemp, plvtemp = induced_power(dat,
                                         Fs=Fs,
                                         frequencies=freqs,
                                         n_cycles=n_cycles,
                                         zero_mean=True)
        plv[condind, :, :] = plvtemp.squeeze()
        tfspec[condind, :, :] = powtemp.squeeze()

    # Save results to the RES directory
    savedict = dict(tfspec=tfspec,
                    plv=plv,
                    times=times,
                    conds=conds,
                    freqs=freqs)
    save_name = subj + '_plv_inducedpow_2Hz_100Hz.mat'
    print 'Saving data for subject', subj
    if (not os.path.isdir(respath)):
        os.mkdir(respath)
コード例 #10
0
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6))
data = epochs.get_data()  # as 3D matrix

layout = mne.find_layout(epochs.info, 'meg')

###############################################################################
# Calculate power and phase locking value

frequencies = np.arange(7, 30, 3)  # define frequencies of interest
n_cycles = frequencies / float(7)  # different number of cycle per frequency
Fs = raw.info['sfreq']  # sampling in Hz
decim = 3
power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                  n_cycles=n_cycles, n_jobs=1, use_fft=False,
                                  decim=decim, zero_mean=True)

###############################################################################
# Prepare topography plots, set baseline correction parameters

baseline = (None, 0)  # set the baseline for induced power
mode = 'ratio'  # set mode for baseline rescaling

###############################################################################
# Show topography of power.

title = 'Induced power - MNE sample data'
plot_topo_power(epochs, power, frequencies, layout, baseline=baseline,
                mode=mode, decim=decim, vmin=0., vmax=14, title=title)
plt.show()
コード例 #11
0
      

# get data #
OCP = epochs['OCP'].get_data()
CVC = epochs['CVC'].get_data()


# gather info for time freq
import numpy as np
n_cycles = 2  # number of cycles in Morlet wavelet
frequencies = np.arange(7, 30, 3)  # frequencies of interest
Fs = raw.info['sfreq']  # sampling in Hz


#Compute induced power and phase-locking values:
from mne.time_frequency import induced_power
power, phase_lock = induced_power(OCP, Fs=Fs, frequencies=frequencies, n_cycles=2, n_jobs=1)

power2 = np.mean(power, axis=0)  # average over sources
phase = np.mean(phase_lock, axis=0)  # average over sources
times = epochs.times


# plot result #
plt.imshow(power2,extent=[times[0],times[-1],frequencies[0],frequencies[-1]],aspect='auto',origin='lower')
# plt.imshow(phase,extent=[times[0],times[-1],frequencies[0],frequencies[-1]],aspect='auto',origin='lower')


plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
コード例 #12
0
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6))
data = epochs.get_data()  # as 3D matrix
evoked = epochs.average()  # compute evoked fields

times = 1e3 * epochs.times  # change unit to ms
evoked_data = evoked.data * 1e13  # change unit to fT / cm

# Take only one channel
data = data[:, 97:98, :]
evoked_data = evoked_data[97:98, :]

frequencies = np.arange(7, 30, 3)  # define frequencies of interest
Fs = raw.info['sfreq']  # sampling in Hz
power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                  n_cycles=2, n_jobs=1, use_fft=False)

power /= np.mean(power[:, :, times < 0], axis=2)[:, :, None]  # baseline ratio

###############################################################################
# View time-frequency plots
import pylab as pl
pl.clf()
pl.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.63)
pl.subplot(3, 1, 1)
pl.plot(times, evoked_data.T)
pl.title('Evoked response (%s)' % evoked.ch_names[97])
pl.xlabel('time (ms)')
pl.ylabel('Magnetic Field (fT/cm)')
pl.xlim(times[0], times[-1])
pl.ylim(-150, 300)
コード例 #13
0
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6))
data = epochs.get_data()  # as 3D matrix
evoked = epochs.average()  # compute evoked fields

times = 1e3 * epochs.times  # change unit to ms
evoked_data = evoked.data * 1e13  # change unit to fT / cm

# Take only one channel
data = data[:, 97:98, :]
evoked_data = evoked_data[97:98, :]

frequencies = np.arange(7, 30, 3)  # define frequencies of interest
Fs = raw.info['sfreq']  # sampling in Hz
power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
                                   n_cycles=2, n_jobs=1, use_fft=False)

power /= np.mean(power[:, :, times < 0], axis=2)[:, :, None]  # baseline ratio

###############################################################################
# View time-frequency plots
import pylab as pl
pl.clf()
pl.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.63)
pl.subplot(3, 1, 1)
pl.plot(times, evoked_data.T)
pl.title('Evoked response (%s)' % raw.info['ch_names'][picks[0]])
pl.xlabel('time (ms)')
pl.ylabel('Magnetic Field (fT/cm)')
pl.xlim(times[0], times[-1])
pl.ylim(-150, 300)
コード例 #14
0
ファイル: meg_94t_fta01.py プロジェクト: fboers/jumeg
epo=mne.read_epochs(pin+'/'+fraw_LLon)

freqs = np.arange(6, 200, 3)  # define frequencies of interest
n_cycles = freqs / 6.  # different number of cycle per frequency
power, itc = tfr_morlet(epo, freqs=freqs, n_cycles=n_cycles, use_fft=False,
                        return_itc=True, decim=3, n_jobs=4)



power.plot_topo(baseline=(-0.2, 0), mode='logratio', title='Average power')

#power.plot([189], baseline=(-0.2, 0), mode='logratio')
#


from mne.time_frequency import induced_power
power, phase_lock = induced_power(epo, Fs=Fs, frequencies=frequencies, n_cycles=2, n_jobs=1)


from mne.time_frequency import tfr_stockwell


power, itc = tfr_stockwell(epo, fmin=6 ,fmax=100,return_itc=True,decim=2,n_jobs=4)



from mne.time_frequency import induced_power
power, phase_lock = induced_power(epochs_data, Fs=Fs, frequencies=frequencies, n_cycles=2, n_jobs=1)

# x(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*pi*50*t)