コード例 #1
0
def test_spatio_temporal_src_connectivity():
    """Test spatio-temporal connectivity from source spaces"""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    src = [dict(), dict()]
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    src[0]['use_tris'] = np.array([[0, 1, 2]])
    src[1]['use_tris'] = np.array([[0, 1, 2]])
    src[0]['vertno'] = np.array([0, 1, 2])
    src[1]['vertno'] = np.array([0, 1, 2])
    connectivity2 = spatio_temporal_src_connectivity(src, 2)
    assert_array_equal(connectivity.todense(), connectivity2.todense())
    # add test for dist connectivity
    src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[0]['vertno'] = [0, 1, 2]
    src[1]['vertno'] = [0, 1, 2]
    connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
    assert_array_equal(connectivity.todense(), connectivity3.todense())
    # add test for source space connectivity with omitted vertices
    inverse_operator = read_inverse_operator(fname_inv)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        src_ = inverse_operator['src']
        connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
        assert len(w) == 1
    a = connectivity.shape[0] / 2
    b = sum([s['nuse'] for s in inverse_operator['src']])
    assert_true(a == b)

    assert_equal(grade_to_tris(5).shape, [40960, 3])
コード例 #2
0
def test_spatio_temporal_src_connectivity():
    """Test spatio-temporal connectivity from source spaces."""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    src = [dict(), dict()]
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    src[0]['use_tris'] = np.array([[0, 1, 2]])
    src[1]['use_tris'] = np.array([[0, 1, 2]])
    src[0]['vertno'] = np.array([0, 1, 2])
    src[1]['vertno'] = np.array([0, 1, 2])
    src[0]['type'] = 'surf'
    src[1]['type'] = 'surf'
    connectivity2 = spatio_temporal_src_connectivity(src, 2)
    assert_array_equal(connectivity.todense(), connectivity2.todense())
    # add test for dist connectivity
    src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[0]['vertno'] = [0, 1, 2]
    src[1]['vertno'] = [0, 1, 2]
    src[0]['type'] = 'surf'
    src[1]['type'] = 'surf'
    connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
    assert_array_equal(connectivity.todense(), connectivity3.todense())
    # add test for source space connectivity with omitted vertices
    inverse_operator = read_inverse_operator(fname_inv)
    src_ = inverse_operator['src']
    with pytest.warns(RuntimeWarning, match='will have holes'):
        connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
    a = connectivity.shape[0] / 2
    b = sum([s['nuse'] for s in inverse_operator['src']])
    assert (a == b)

    assert_equal(grade_to_tris(5).shape, [40960, 3])
コード例 #3
0
def test_spatio_temporal_src_connectivity():
    """Test spatio-temporal connectivity from source spaces"""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    src = [dict(), dict()]
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    src[0]['use_tris'] = np.array([[0, 1, 2]])
    src[1]['use_tris'] = np.array([[0, 1, 2]])
    src[0]['vertno'] = np.array([0, 1, 2])
    src[1]['vertno'] = np.array([0, 1, 2])
    connectivity2 = spatio_temporal_src_connectivity(src, 2)
    assert_array_equal(connectivity.todense(), connectivity2.todense())
    # add test for dist connectivity
    src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[0]['vertno'] = [0, 1, 2]
    src[1]['vertno'] = [0, 1, 2]
    connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
    assert_array_equal(connectivity.todense(), connectivity3.todense())
    # add test for source space connectivity with omitted vertices
    inverse_operator = read_inverse_operator(fname_inv)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        src_ = inverse_operator['src']
        connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
        assert len(w) == 1
    a = connectivity.shape[0] / 2
    b = sum([s['nuse'] for s in inverse_operator['src']])
    assert_true(a == b)

    assert_equal(grade_to_tris(5).shape, [40960, 3])
コード例 #4
0
def test_spatio_temporal_src_connectivity():
    """Test spatio-temporal connectivity from source spaces."""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    src = [dict(), dict()]
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    src[0]['use_tris'] = np.array([[0, 1, 2]])
    src[1]['use_tris'] = np.array([[0, 1, 2]])
    src[0]['vertno'] = np.array([0, 1, 2])
    src[1]['vertno'] = np.array([0, 1, 2])
    src[0]['type'] = 'surf'
    src[1]['type'] = 'surf'
    connectivity2 = spatio_temporal_src_connectivity(src, 2)
    assert_array_equal(connectivity.todense(), connectivity2.todense())
    # add test for dist connectivity
    src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[0]['vertno'] = [0, 1, 2]
    src[1]['vertno'] = [0, 1, 2]
    src[0]['type'] = 'surf'
    src[1]['type'] = 'surf'
    connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
    assert_array_equal(connectivity.todense(), connectivity3.todense())
    # add test for source space connectivity with omitted vertices
    inverse_operator = read_inverse_operator(fname_inv)
    src_ = inverse_operator['src']
    with pytest.warns(RuntimeWarning, match='will have holes'):
        connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
    a = connectivity.shape[0] / 2
    b = sum([s['nuse'] for s in inverse_operator['src']])
    assert (a == b)

    assert_equal(grade_to_tris(5).shape, [40960, 3])
コード例 #5
0
def test_spatio_temporal_tris_connectivity():
    """Test spatio-temporal connectivity from triangles"""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
    components = stats.cluster_level._get_components(np.array(x), connectivity)
    # _get_components works differently now...
    old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1]
    new_fmt = np.array(old_fmt)
    new_fmt = [np.nonzero(new_fmt == v)[0]
               for v in np.unique(new_fmt[new_fmt >= 0])]
    assert_true(len(new_fmt), len(components))
    for c, n in zip(components, new_fmt):
        assert_array_equal(c, n)
コード例 #6
0
def perform_statistics_2(morphed_data, parameter_cache, vector, p_value=None):
    """Performs the statistical analysis using spatial_tris_connectivity.

    :param morphed_data: Morphed data obtained from morph_data function
    :param parameter_cache: Morphed parameter cache obtained from morph_data function.
    :param vector: Method to perform modelling ('sLORETA' etc.)
    :param p_value: Statistical p-value
    :return: clu, good_cluster_inds
    """
    # Unpack parameter cache dictionary
    n_subjects = parameter_cache['n_subjects']
    n_times = parameter_cache['n_times']

    # Take on the absolute
    X = np.abs(morphed_data)

    # Obtain the paired contrast
    if vector is False:
        X = X[:, :, :, 0] - X[:, :, :,
                              1]  # Dimension is (space, time, subjects)
    else:
        X = X[:, :, :, :,
              0] - X[:, :, :, :,
                     1]  # Dimension is (space, vector, time, subjects)

    print('Computing connectivity... ')
    connectivity_2 = mne.spatio_temporal_tris_connectivity(
        grade_to_tris(5), n_times)

    # Note that X needs to be a multi-dimensional array of shape [samples (subjects) x time x space]
    if vector is False:
        X = np.transpose(X, [2, 1, 0])
    else:
        X = np.transpose(X, [3, 2, 1, 0])  ##### TO DOUBLE CHECK #####

    # Perform the clustering
    p_threshold = p_value  # 0.001
    t_threshold = -stats.distributions.t.ppf(p_threshold / 2., n_subjects - 1)

    print('Clustering... ')
    T_obs, clusters, cluster_p_values, H0 = spatio_temporal_cluster_1samp_test(
        X, connectivity=connectivity_2, n_jobs=1, threshold=t_threshold)

    # Pack the outputs into tuple
    clu = (T_obs, clusters, cluster_p_values, H0)

    # Select the clusters that are sig. at p < p_value (Note this value is multiple-comparisons corrected)
    good_cluster_inds = np.where(cluster_p_values < p_value)[0]
    return clu, good_cluster_inds