コード例 #1
0
ファイル: test_utils.py プロジェクト: vhcg77/mne-features
def test_psd():
    n_times = data.shape[-1]
    freqs, pxx = signal.welch(data, sfreq,
                              window=signal.get_window('boxcar', n_times),
                              return_onesided=True, scaling='spectrum')
    ps, freqs2 = power_spectrum(sfreq, data, return_db=False)
    assert_almost_equal(freqs, freqs2)
    assert_almost_equal(pxx, ps)
コード例 #2
0
def test_psd():
    n_channels, n_times = data.shape
    _data = data[None, ...]
    # Only test output shape when `method='welch'` or `method='multitaper'`
    # since it is actually just a wrapper for MNE functions:
    psd_welch, _ = power_spectrum(sfreq, _data, psd_method='welch')
    psd_multitaper, _ = power_spectrum(sfreq, _data, psd_method='multitaper')
    psd_fft, freqs_fft = power_spectrum(sfreq, _data, psd_method='fft')
    assert_equal(psd_welch.shape, (1, n_channels, n_times // 2 + 1))
    assert_equal(psd_multitaper.shape, (1, n_channels, n_times // 2 + 1))
    assert_equal(psd_fft.shape, (1, n_channels, n_times // 2 + 1))

    # Compare result obtained with `method='fft'` to the Scipy's result
    # (implementation of Welch's method with rectangular window):
    expected_freqs, expected_psd = signal.welch(data,
                                                sfreq,
                                                window=signal.get_window(
                                                    'boxcar', data.shape[-1]),
                                                return_onesided=True,
                                                scaling='density')
    assert_almost_equal(expected_freqs, freqs_fft)
    assert_almost_equal(expected_psd, psd_fft[0, ...])
コード例 #3
0
ファイル: test_utils.py プロジェクト: vhcg77/mne-features
def test_power_spectrum():
    ps, freqs = power_spectrum(sfreq, data, return_db=False)
    _data = data - np.mean(data, axis=-1)[:, None]
    assert_almost_equal(np.mean(_data ** 2, axis=-1), np.sum(ps, axis=-1))
コード例 #4
0
raw.filter(.5, None, fir_design='firwin')

###############################################################################
# Estimate the slope (and the intercept) of the PSD. We use here a single
# MEG channel during the full recording to estimate the slope and the
# intercept.

data, _ = raw[0, :2048]
# data = epochs.get_data()[0, 1, :].reshape((1, -1))
sfreq = raw.info['sfreq']

# Compute the (one-sided) PSD using FFT. The ``mask`` variable allows to
# select only the part of the PSD which corresponds to frequencies between
# 0.1Hz and 40Hz (the data used in this example is already low-pass filtered
# at 40Hz).
psd, freqs = power_spectrum(sfreq, data)
mask = np.logical_and(0.1 <= freqs, freqs <= 40)
psd, freqs = psd[0, mask], freqs[mask]

# Estimate the slope (and the intercept) of the PSD. The function
# :func:`compute_spect_slope` assumes that the PSD of the signal is of the
# form: ``psd[f] = b / (f ** a)``. The coefficients a and b are respectively
# called *slope* and *intercept* of the Power Spectral Density. The values of
# the variables ``slope`` and ``intercept`` differ from the values returned
# by ``compute_spect_slope`` because, in the feature function, the linear
# regression fit is done in the log10-log10 scale.
intercept, slope, _, _ = compute_spect_slope(sfreq, data, fmin=1., fmax=40.)
print('The estimated slope (respectively intercept) is: %1.2f (resp. %1.3e)' %
      (slope, intercept))

# Plot the PSD together with the ``b / (f ** a)`` curve (estimated decay of