def individual_analysis(bids_path, ID): raw_intensity = read_raw_bids(bids_path=bids_path, verbose=False) # Convert signal to haemoglobin and resample raw_od = optical_density(raw_intensity) raw_haemo = beer_lambert_law(raw_od) raw_haemo.resample(0.3) # Cut out just the short channels for creating a GLM repressor sht_chans = get_short_channels(raw_haemo) raw_haemo = get_long_channels(raw_haemo) # Create a design matrix design_matrix = make_first_level_design_matrix(raw_haemo, stim_dur=5.0) # Append short channels mean to design matrix design_matrix["ShortHbO"] = np.mean(sht_chans.copy().pick(picks="hbo").get_data(), axis=0) design_matrix["ShortHbR"] = np.mean(sht_chans.copy().pick(picks="hbr").get_data(), axis=0) # Run GLM glm_est = run_GLM(raw_haemo, design_matrix) # Define channels in each region of interest # List the channel pairs manually left = [[4, 3], [1, 3], [3, 3], [1, 2], [2, 3], [1, 1]] right = [[6, 7], [5, 7], [7, 7], [5, 6], [6, 7], [5, 5]] # Then generate the correct indices for each pair groups = dict( Left_Hemisphere=picks_pair_to_idx(raw_haemo, left, on_missing='ignore'), Right_Hemisphere=picks_pair_to_idx(raw_haemo, right, on_missing='ignore')) # Extract channel metrics cha = glm_to_tidy(raw_haemo, glm_est, design_matrix) cha["ID"] = ID # Add the participant ID to the dataframe # Compute region of interest results from channel data roi = pd.DataFrame() for idx, col in enumerate(design_matrix.columns): roi = roi.append(glm_region_of_interest(glm_est, groups, idx, col)) roi["ID"] = ID # Add the participant ID to the dataframe # Contrast left vs right tapping contrast_matrix = np.eye(design_matrix.shape[1]) basic_conts = dict([(column, contrast_matrix[i]) for i, column in enumerate(design_matrix.columns)]) contrast_LvR = basic_conts['Tapping/Left'] - basic_conts['Tapping/Right'] contrast = compute_contrast(glm_est, contrast_LvR) con = glm_to_tidy(raw_haemo, contrast, design_matrix) con["ID"] = ID # Add the participant ID to the dataframe # Convert to uM for nicer plotting below. cha["theta"] = [t * 1.e6 for t in cha["theta"]] roi["theta"] = [t * 1.e6 for t in roi["theta"]] con["effect"] = [t * 1.e6 for t in con["effect"]] return raw_haemo, roi, cha, con
def test_GLM_system_test(): fnirs_data_folder = mne.datasets.fnirs_motor.data_path() fnirs_raw_dir = os.path.join(fnirs_data_folder, 'Participant-1') raw_intensity = mne.io.read_raw_nirx(fnirs_raw_dir).load_data() raw_intensity.resample(1.0) new_des = [des for des in raw_intensity.annotations.description] new_des = ['Control' if x == "1.0" else x for x in new_des] new_des = ['Tapping/Left' if x == "2.0" else x for x in new_des] new_des = ['Tapping/Right' if x == "3.0" else x for x in new_des] annot = mne.Annotations(raw_intensity.annotations.onset, raw_intensity.annotations.duration, new_des) raw_intensity.set_annotations(annot) raw_intensity.annotations.crop(35, 2967) raw_od = mne.preprocessing.nirs.optical_density(raw_intensity) raw_haemo = mne.preprocessing.nirs.beer_lambert_law(raw_od) short_chs = get_short_channels(raw_haemo) raw_haemo = get_long_channels(raw_haemo) design_matrix = make_first_level_design_matrix(raw_intensity, hrf_model='spm', stim_dur=5.0, drift_order=3, drift_model='polynomial') design_matrix["ShortHbO"] = np.mean( short_chs.copy().pick(picks="hbo").get_data(), axis=0) design_matrix["ShortHbR"] = np.mean( short_chs.copy().pick(picks="hbr").get_data(), axis=0) glm_est = run_GLM(raw_haemo, design_matrix) df = glm_to_tidy(raw_haemo, glm_est, design_matrix) df = _tidy_long_to_wide(df) a = (df.query('condition in ["Control"]').groupby(['condition', 'Chroma' ]).agg(['mean'])) # Make sure false positive rate is less than 5% assert a["Significant"].values[0] < 0.05 assert a["Significant"].values[1] < 0.05 a = (df.query('condition in ["Tapping/Left", "Tapping/Right"]').groupby( ['condition', 'Chroma']).agg(['mean'])) # Fairly arbitrary cutoff here, but its more than 5% assert a["Significant"].values[0] > 0.7 assert a["Significant"].values[1] > 0.7 assert a["Significant"].values[2] > 0.7 assert a["Significant"].values[3] > 0.7 left = [[1, 1], [1, 2], [1, 3], [2, 1], [2, 3], [2, 4], [3, 2], [3, 3], [4, 3], [4, 4]] right = [[5, 5], [5, 6], [5, 7], [6, 5], [6, 7], [6, 8], [7, 6], [7, 7], [8, 7], [8, 8]] groups = dict(Left_ROI=picks_pair_to_idx(raw_haemo, left), Right_ROI=picks_pair_to_idx(raw_haemo, right)) df = pd.DataFrame() for idx, col in enumerate(design_matrix.columns[:3]): df = df.append(glm_region_of_interest(glm_est, groups, idx, col)) assert df.shape == (12, 8)
# --------------------------- # # Or alternatively we can summarise the responses across regions of interest # for each condition. And you can plot it with your favorite software. left = [[1, 1], [1, 2], [1, 3], [2, 1], [2, 3], [2, 4], [3, 2], [3, 3], [4, 3], [4, 4]] right = [[5, 5], [5, 6], [5, 7], [6, 5], [6, 7], [6, 8], [7, 6], [7, 7], [8, 7], [8, 8]] groups = dict(Left_ROI=picks_pair_to_idx(raw_haemo, left), Right_ROI=picks_pair_to_idx(raw_haemo, right)) df = pd.DataFrame() for idx, col in enumerate(design_matrix.columns[:3]): df = df.append(glm_region_of_interest(glm_est, groups, idx, col)) ############################################################################### # # Compute contrasts # ----------------- # # We can also define a contrast as described in # `Nilearn docs <http://nilearn.github.io/auto_examples/04_glm_first_level/plot_localizer_surface_analysis.html>`_ # and plot it. # Here we contrast the response to tapping on the left hand with the response # from tapping on the right hand. contrast_matrix = np.eye(design_matrix.shape[1]) basic_conts = dict([(column, contrast_matrix[i])