コード例 #1
0
def test(*args, **kwargs):
    dataset = MnistArithmeticDataset(*args, **kwargs)

    batch_x, batch_y = dataset.next_batch()

    for x, y in zip(batch_x, batch_y):
        print("\nCorrect answer is: {}".format(y[0]))
        print(image_to_string(x))
コード例 #2
0
def convert_emnist_and_store(path, new_image_shape):
    if new_image_shape == (28, 28):
        raise Exception("Original shape of EMNIST is (28, 28).")

    print("Converting (28, 28) EMNIST dataset to {}...".format(new_image_shape))

    emnist_dir = Path(path) / 'emnist'
    new_dir = Path(path) / 'emnist_{}_by_{}'.format(*new_image_shape)
    try:
        shutil.rmtree(str(new_dir))
    except FileNotFoundError:
        pass
    new_dir.mkdir(exist_ok=False, parents=False)

    classes = ''.join(
        [str(i) for i in range(10)] +
        [chr(i + ord('A')) for i in range(26)] +
        [chr(i + ord('a')) for i in range(26)]
    )

    for i, cls in enumerate(sorted(classes)):
        with gzip.open(str(emnist_dir / (str(cls) + '.pklz')), 'rb') as f:
            _x = dill.load(f)

            new_x = []
            for img in _x:
                img = resize(img, new_image_shape, mode='edge')
                new_x.append(img)

            print(cls)
            print(image_to_string(_x[0]))
            _x = np.array(new_x)
            print(image_to_string(_x[0]))

            path_i = new_dir / (cls + '.pklz')
            with gzip.open(str(path_i), 'wb') as f:
                dill.dump(_x, f, protocol=dill.HIGHEST_PROTOCOL)
コード例 #3
0
def test_salience(path,
                  sub_image_shape=(14, 14),
                  n_examples=20,
                  min_digits=2,
                  max_digits=3,
                  image_shape=(40, 40),
                  max_overlap=1):

    dataset = SalienceDataset(path,
                              n_examples, [0, 1, 2],
                              min_digits=min_digits,
                              max_digits=max_digits,
                              sub_image_shape=sub_image_shape,
                              image_shape=image_shape,
                              max_overlap=max_overlap,
                              std=0.05,
                              output_shape=(20, 20))

    batch_x, batch_y = dataset.next_batch()

    for x, y in zip(batch_x, batch_y):
        print(image_to_string(y))
        print(image_to_string(x))
    print(batch_x.max())
コード例 #4
0
def process_emnist(data_dir, quiet):
    """
    Download emnist data if it hasn't already been downloaded. Do some
    post-processing to put it in a more useful format. End result is a directory
    called `emnist-byclass` which contains a separate pklz file for each emnist
    class.

    Pixel values of stored images are floating points values between 0 and 1.
    Images for each class are put into a floating point numpy array with shape
    (n_images_in_class, 28, 28). This numpy array is pickled and stored in a zip
    file with name <class char>.pklz.

    Parameters
    ----------
    data_dir: str
         Directory where files should be stored.

    """
    emnist_dir = process_path(os.path.join(data_dir, 'emnist'))

    if _validate_emnist(emnist_dir):
        print("EMNIST data seems to be present already, exiting.")
        return
    else:
        try:
            shutil.rmtree(emnist_dir)
        except FileNotFoundError:
            pass

    os.makedirs(emnist_dir, exist_ok=True)

    download_emnist(emnist_dir)

    print("Processing...")
    with cd(emnist_dir):
        emnist = loadmat('emnist-byclass.mat')

        train, test, _ = emnist['dataset'][0, 0]
        train_x, train_y, _ = train[0, 0]
        test_x, test_y, _ = test[0, 0]

        y = np.concatenate((train_y, test_y), 0)
        x = np.concatenate((train_x, test_x), 0)

        # Give images the right orientation so that plt.imshow(x[0]) just works.
        x = np.moveaxis(x.reshape(-1, 28, 28), 1, 2)
        x = x.astype('f') / 255.0

        for i in sorted(set(y.flatten())):
            keep = y == i
            x_i = x[keep.flatten(), :]
            if i >= 36:
                char = chr(i - 36 + ord('a'))
            elif i >= 10:
                char = chr(i - 10 + ord('A'))
            else:
                char = str(i)

            if quiet >= 2:
                pass
            elif quiet == 1:
                print(char)
            elif quiet <= 0:
                print(char)
                print(image_to_string(x_i[0, ...]))

            file_i = char + '.pklz'
            with gzip.open(file_i, 'wb') as f:
                dill.dump(x_i, f, protocol=dill.HIGHEST_PROTOCOL)

        os.remove('emnist-byclass.mat')

    print("Done setting up EMNIST data.")

    return x, y
コード例 #5
0
def load_emnist(
        path, classes, balance=False, include_blank=False,
        shape=None, one_hot=False, n_examples=None, show=False):
    """ Load emnist data from disk by class.

    Elements of `classes` pick out which emnist classes to load, but different labels
    end up getting returned because most classifiers require that the labels
    be in range(len(classes)). We return a dictionary `class_map` which maps from
    elements of `classes` down to range(len(classes)).

    Pixel values of returned images are integers in the range 0-255, but stored as float32.
    Returned X array has shape (n_images,) + shape.

    Parameters
    ----------
    path: str
        Path to data directory, assumed to contain a sub-directory called `emnist`.
    classes: list of character from the set (0-9, A-Z, a-z)
        Each character is the name of a class to load.
    balance: boolean
        If True, will ensure that all classes are balanced by removing elements
        from classes that are larger than the minimu-size class.
    include_blank: boolean
        If True, includes an additional class that consists of blank images.
    shape: (int, int)
        Shape of the images.
    one_hot: bool
        If True, labels are one-hot vectors instead of integers.
    n_examples: int
        Maximum number of examples returned. If not supplied, return all available data.
    show: bool
        If True, prints out an image from each class.

    """
    emnist_dir = Path(path) / 'emnist'

    needs_reshape = False
    if shape and shape != (28, 28):
        resized_dir = Path(path) / 'emnist_{}_by_{}'.format(*shape)

        if _validate_emnist(resized_dir):
            emnist_dir = resized_dir
        else:
            needs_reshape = True

    classes = list(classes)[:]
    y = []
    x = []
    class_map = {}
    for i, cls in enumerate(sorted(list(classes))):
        with gzip.open(str(emnist_dir / (str(cls) + '.pklz')), 'rb') as f:
            _x = dill.load(f)
            x.append(np.float32(np.uint8(255*np.minimum(_x, 1))))
            y.extend([i] * x[-1].shape[0])
        if show:
            print(cls)
            print(image_to_string(x[-1]))
        class_map[cls] = i
    x = np.concatenate(x, axis=0)
    y = np.array(y).reshape(-1, 1)

    if include_blank:
        class_count = min([(y == class_map[c]).sum() for c in classes])
        blanks = np.zeros((class_count,) + x.shape[1:])
        x = np.concatenate((x, blanks), axis=0)
        blank_idx = len(class_map)
        y = np.concatenate((y, blank_idx * np.ones((class_count, 1), dtype=y.dtype)), axis=0)
        blank_symbol = ' '
        class_map[blank_symbol] = blank_idx
        classes.append(blank_symbol)

    order = np.random.permutation(x.shape[0])

    x = x[order, :]
    y = y[order, :]

    if balance:
        class_count = min([(y == class_map[c]).sum() for c in classes])
        keep_x, keep_y = [], []
        for i, cls in enumerate(classes):
            keep_indices, _ = np.nonzero(y == class_map[cls])
            keep_indices = keep_indices[:class_count]
            keep_x.append(x[keep_indices, :])
            keep_y.append(y[keep_indices, :])
        x = np.concatenate(keep_x, 0)
        y = np.concatenate(keep_y, 0)

    if n_examples is not None:
        x = x[:n_examples]
        y = y[:n_examples]

    if one_hot:
        _y = np.zeros((y.shape[0], len(classes))).astype('f')
        _y[np.arange(y.shape[0]), y.flatten()] = 1.0
        y = _y

    if needs_reshape:
        if x.shape[0] > 10000:
            warnings.warn(
                "Performing an online resize of a large number of images ({}), "
                "consider creating and storing the resized dataset.".format(x.shape[0])
            )

        x = [resize(img, shape, mode='edge') for img in np.uint8(x)]
        x = np.float32(np.uint8(255*np.minimum(x, 1)))

    return x, y, class_map
コード例 #6
0
def load_omniglot(
        path, classes, include_blank=False, shape=None, one_hot=False, indices=None, show=False):
    """ Load omniglot data from disk by class.

    Elements of `classes` pick out which omniglot classes to load, but different labels
    end up getting returned because most classifiers require that the labels
    be in range(len(classes)). We return a dictionary `class_map` which maps from
    elements of `classes` down to range(len(classes)).

    Returned images are arrays of floats in the range 0-255. White text on black background
    (with 0 corresponding to black). Returned X array has shape (n_images,) + shape.

    Parameters
    ----------
    path: str
        Path to data directory, assumed to contain a sub-directory called `omniglot`.
    classes: list of strings, each giving a class label
        Each character is the name of a class to load.
    balance: boolean
        If True, will ensure that all classes are balanced by removing elements
        from classes that are larger than the minimu-size class.
    include_blank: boolean
        If True, includes an additional class that consists of blank images.
    shape: (int, int)
        Shape of returned images.
    one_hot: bool
        If True, labels are one-hot vectors instead of integers.
    indices: list of int
        The image indices within the classes to include. For each class there are 20 images.
    show: bool
        If True, prints out an image from each class.

    """
    omniglot_dir = os.path.join(path, 'omniglot')
    classes = list(classes)[:]
    if not indices:
        indices = list(range(20))
    for idx in indices:
        assert 0 <= idx < 20
    y = []
    x = []
    class_map = {}
    for i, cls in enumerate(sorted(list(classes))):
        alphabet, character = cls.split(',')
        char_dir = os.path.join(omniglot_dir, alphabet, "character{:02d}".format(int(character)))
        files = os.listdir(char_dir)
        class_id = files[0].split("_")[0]

        for idx in indices:
            f = os.path.join(char_dir, "{}_{:02d}.png".format(class_id, idx + 1))
            _x = scipy.misc.imread(f)
            _x = 255. - _x
            if shape:
                _x = resize(_x, shape, mode='edge')

            x.append(np.float32(_x))
            y.append(i)
        if show:
            print(cls)
            print(image_to_string(x[-1]))
        class_map[cls] = i

    x = np.array(x)
    y = np.array(y).reshape(-1, 1)

    if include_blank:
        class_count = min([(y == class_map[c]).sum() for c in classes])
        blanks = np.zeros((class_count,) + shape)
        x = np.concatenate((x, blanks), axis=0)
        blank_idx = len(class_map)
        y = np.concatenate((y, blank_idx * np.ones((class_count, 1), dtype=y.dtype)), axis=0)
        blank_symbol = ' '
        class_map[blank_symbol] = blank_idx
        classes.append(blank_symbol)

    order = np.random.permutation(x.shape[0])

    x = x[order, :]
    y = y[order, :]

    if one_hot:
        _y = np.zeros((y.shape[0], len(classes))).astype('f')
        _y[np.arange(y.shape[0]), y.flatten()] = 1.0
        y = _y

    return x, y, class_map