def train(): """Train MNIST for a number of steps.""" # create a new graph and use it as default graph in the following context: with tf.Graph().as_default(): global_step = tf.train.get_or_create_global_step() # Get images and labels # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): labels, images = mnist_input.inputs([FILE_NAMES], batchSize=100, shuffle=True) # Build a Graph that computes the logits predictions from the # inference model. logits = mnist_model.inference(images) # Calculate loss. loss = mnist_model.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = mnist_model.train(loss, 0.001, global_step) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % 100 == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results sec_per_batch = float(duration / 100) format_str = ('%s: step %d, loss = %.2f (%.3f sec/batch)') print (format_str % (datetime.now(), self._step, loss_value, sec_per_batch)) with tf.train.MonitoredTrainingSession(hooks=[_LoggerHook()]) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
def train(input): ''' Trains the CNN model defined in minst_model using gradient decent optimizer Args: ''' # Place holders for input data and output predictions x = tf.placeholder(tf.float32, shape=[None, 784]) y = tf.placeholder(tf.float32, shape=[None, 10]) image = tf.reshape(x, [-1, 28, 28, 1]) prediction = mnist_model.inference(image) cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction)) opt = tf.train.GradientDescentOptimizer(0.01) train_step = opt.minimize(cost) correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(50000): batch = input.train.next_batch(100) if i % 100 == 0: print('Step = %d, Train accuracy = %f' % (i, accuracy.eval(feed_dict={ x: batch[0], y: batch[1] }))) train_step.run(feed_dict={x: batch[0], y: batch[1]}) saver.save(sess, './mnist_train/model.ckpt') print('Test accuracy = %f' % accuracy.eval(feed_dict={ x: input.test.images, y: input.test.labels }))
def tower_loss(scope, images, labels): """scope: name scope asigned to current device.""" """images and labels: data batch.""" # construct network on current device logits = mnist_model.inference(images) # construct backward projection (i.e. compute loss) on current device # we must stop the data flow before the return node # to avoid 'fetch-op' from data node outside current device _ = mnist_model.loss(logits, labels) # now we use another method to fetch data only from current device # and compute the local loss losses = tf.get_collection('losses', scope) # compute total loss total_loss = tf.add_n(losses, name='total_loss') # add summaries for l in losses + [total_loss]: loss_name = re.sub('%s_[0-9]*/' % 'tower', '', l.op.name) tf.summary.scalar(loss_name, l) # over, return the total loss for current batch return total_loss
with tf.name_scope("data"): # Place holders for the input data and labels # Input image node (x): 2D tensor; batch size x flattened 28 x 28 MNIST image # Target output classes node (y_): 2D tensor; batch size x number of classes x = tf.placeholder(tf.float32, shape=[None, IMAGE_PIXELS], name="image") y_ = tf.placeholder(tf.float32, shape=[None, N_CLASSES], name="label") global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') keep_prob = tf.placeholder(tf.float32, name='keep_prob') train_phase = tf.placeholder_with_default(False, shape=[], name='train_phase') logits = mnist_model.inference(x, IMAGE_SIZE, N_CLASSES, keep_prob, train_phase) loss = mnist_model.loss(y_, logits) train_op = mnist_model.train(loss) accuracy = mnist_model.evaluate(logits, y_) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(max_to_keep=1) # Set checkpoint path and restore checkpoint if exists ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_path) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, save_path=ckpt.model_checkpoint_path)
Created on Wed May 3 15:26:51 2017 @author: herow """ import tensorflow as tf import mnist_model as mnist import tensorflow.examples.tutorials.mnist.input_data as input_data data_set = input_data.read_data_sets('MNIST_data', one_hot=True) with tf.Graph().as_default(): images_placeholder = tf.placeholder("float", shape=[None, 784]) labels_placeholder = tf.placeholder("float", shape=[None, 10]) drop_out = tf.placeholder("float") learning_rate = tf.placeholder("float") predicts = mnist.inference(images_placeholder, drop_out) loss = mnist.loss(predicts, labels_placeholder) train_op = mnist.training(loss, learning_rate) correct_prediction = tf.equal(tf.argmax(predicts, 1), tf.argmax(labels_placeholder, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in xrange(2000): batch = data_set.train.next_batch(50) # if i%100 == 0: # train_accuracy = sess.run(accuracy,feed_dict={images_placeholder:batch[0], # labels_placeholder:batch[1], drop_out:1.0, learning_rate:1e-4})
def train(): """Train model for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels for MNIST data. images, labels = model.inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = model.inference(images) # Calculate loss. loss = model.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = model.train(loss, global_step) accuracy = model.accuracy(logits,labels) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) print('Initializing all variables...') sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) print('Starting queue runners...') summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value,accuracy_value = sess.run([train_op, loss,accuracy]) #print(sess.run(images)[0]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 1 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, batch accuracy = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, accuracy_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
interpolation=cv2.INTER_CUBIC) img_threshold1 = cv2.adaptiveThreshold(img_downscale1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 30) img_prep1 = cv2.bitwise_not(img_threshold1) img_prep1 = (img_prep1 / 255).astype('float32') #plt.gray() #plt.subplot(2, 2, 1), plt.imshow(img_blurred1) #plt.subplot(2, 2, 2), plt.imshow(img_erode1) #plt.subplot(2, 2, 3), plt.imshow(img_downscale1) #plt.subplot(2, 2, 4), plt.imshow(img_threshold1) #plt.show() # Placeholder for output prediction x = tf.placeholder(shape=[1, 28, 28, 1], dtype=tf.float32) logits = tf.nn.softmax(mnist_model.inference(x)) saver = tf.train.Saver() sess = tf.Session() saver.restore(sess, './mnist_train/model.ckpt') img_final = img_prep1.reshape([1, 28, 28, 1]) prediction = (sess.run(logits, feed_dict={x: img_final})) number = np.argmax(prediction) print('Your image contains: %d, with confidence: %f' % (number, prediction[0, number]))
def train(data_dir, model_dir, log_dir, batch_size=BATCH_SIZE, max_batches=MAX_TRAINING_STEPS): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False, name='global_step') images_ph, labels_ph, keep_rate_ph = mnist_model.placeholders() pred, logits = mnist_model.inference(images_ph, keep_rate_ph) loss = mnist_model.loss(logits, labels_ph) avg_loss = mnist_model.avg_loss() train_op = mnist_model.training(loss, LEARNING_RATE, global_step) accuracy = mnist_model.evaluation(pred, labels_ph) images, labels = mnist_input.input_pipeline( data_dir, batch_size, mnist_input.DataTypes.train) merged_summary_op = tf.merge_all_summaries() saver = tf.train.Saver() sess = tf.Session() ckpt = _get_checkpoint(model_dir) if not ckpt: print("Grand New training") init_op = tf.initialize_all_variables() sess.run(init_op) else: print("Resume training after %s" % ckpt) saver.restore(sess, ckpt) coord = tf.train.Coordinator() # Start the queue runner, QueueRunner created in mnist_input.py threads = tf.train.start_queue_runners(sess=sess, coord=coord) train_writer = tf.train.SummaryWriter(log_dir + '/train', sess.graph) acc_step = sess.run(global_step) print('accumulated step = %d' % acc_step) print('prevous avg_loss = %.3f' % sess.run(avg_loss)) # Training cycle try: lst = [] for step in range(1, MAX_TRAINING_STEPS + 1): if coord.should_stop(): break images_r, labels_r = sess.run([images, labels]) train_feed = { images_ph: images_r, labels_ph: labels_r, keep_rate_ph: 0.5 } start_time = time.time() _, train_loss = sess.run([train_op, loss], feed_dict=train_feed) duration = time.time() - start_time lst.append(train_loss) assert not np.isnan( train_loss), 'Model diverged with loss = NaN' if step % DISPLAY_STEP == 0: examples_per_sec = BATCH_SIZE / duration sec_per_batch = float(duration) print( '%s: step %d, train_loss = %.6f (%.1f examples/sec; %.3f sec/batch)' % (datetime.now(), step, train_loss, examples_per_sec, sec_per_batch)) if step % LOG_STEP == 0: avg = np.mean(lst) del lst[:] #print('avg loss = %.3f' % avg) sess.run(avg_loss.assign(avg)) summary_str = sess.run(merged_summary_op, feed_dict=train_feed) train_writer.add_summary(summary_str, acc_step + step) if step % CKPT_STEP == 0 or step == MAX_TRAINING_STEPS: ckpt_path = os.path.join(model_dir, 'model.ckpt') saver.save(sess, ckpt_path, global_step) except tf.errors.OutOfRangeError: print('Done training for %d epochs' % (num_epochs)) finally: # When done, ask the threads to stop coord.request_stop() coord.join(threads) train_writer.close() sess.close()