def output_edges_match(self, # pylint: disable=method-hidden graph: Graph, match: SubgraphMatch, new_sub_graph: dict): """ Function that generates matching of sub-graph output edges to a new sub-graph output edges. It works in case when the sub-graph is replaced with a single custom-layer node. :param graph: networkX graph to operate on. :param match: object describing matched sub-graph. :param new_sub_graph: dictionary of Nodes objects that forms new sub-graph. :return: object describing edges matching. """ output_edges_match = dict() outputs_count = match.outputs_count() # prepare output_edges_match based on custom replacement configuration file for sub_graph_output_port in range(outputs_count): output_node, output_port = match.output_node(sub_graph_output_port) output_edges_match[(output_node.id, output_port)] = (new_sub_graph['new_node'].id, sub_graph_output_port) return output_edges_match
def output_edges_match(self, graph: Graph, match: SubgraphMatch, new_sub_graph: dict): return { match.output_node(0)[0].id: new_sub_graph['detection_output_node'].id }
def generate_sub_graph(self, graph: Graph, match: SubgraphMatch): reshape_classes_node = create_op_node_with_second_input(graph, Reshape, int64_array([0, -1]), dict(name='do_reshape_classes'), match.single_input_node(1)[0]) initial_priors_node = match.single_input_node(2)[0] priors_name = initial_priors_node.soft_get('name', initial_priors_node.id) # model calculates identical prior boxes for each batch, so we take first slice of them begin = Const(graph, {'value': np.array([0, 0, 0], dtype=np.int32)}).create_node() end = Const(graph, {'value': np.array([1, 0, 0], dtype=np.int32)}).create_node() stride = Const(graph, {'value': np.array([1, 1, 1], dtype=np.int32)}).create_node() priors_node = StridedSlice(graph, {'name': priors_name + '/0_batch_slice', 'begin_mask': np.array([1, 1, 1], dtype=np.int32), 'end_mask': np.array([1, 0, 0], dtype=np.int32), 'new_axis_mask': np.array([0], dtype=np.int32), 'shrink_axis_mask': np.array([0], dtype=np.int32), 'ellipsis_mask': np.array([0], dtype=np.int32)}).create_node() initial_priors_node.out_port(0).connect(priors_node.in_port(0)) begin.out_port(0).connect(priors_node.in_port(1)) end.out_port(0).connect(priors_node.in_port(2)) stride.out_port(0).connect(priors_node.in_port(3)) placeholders = graph.get_op_nodes(type='Parameter') assert len(placeholders) == 1, "{} replacer requires model to have one Placeholder, but current model has " \ "{} placeholders".format(self.replacement_id, len(placeholders)) placeholder = placeholders[0] # scale prior boxes to the [0, 1] interval node_with_scales_for_prior_boxes = self.placeholder_scales(placeholder) priors_scale_node = Mul(graph, {'name': 'scale_priors'}).create_node() broadcast = Broadcast(graph, {'name': 'scales_broadcast'}).create_node() shape_of_priors = Shape(graph, {'name': 'priors_shape'}).create_node() priors_node.out_port(0).connect(shape_of_priors.in_port(0)) broadcast.in_port(1).connect(shape_of_priors.out_port(0)) broadcast.in_port(0).connect(node_with_scales_for_prior_boxes.out_port(0)) priors_scale_node.in_port(0).connect(priors_node.out_port(0)) priors_scale_node.in_port(1).connect(broadcast.out_port(0)) try: variance = match.custom_replacement_desc.custom_attributes['variance'] except: raise Error('There is no variance attribute in {} replacement config file `custom_attributes`' ''.format(self.replacement_id)) priors = self.append_variances(priors_scale_node, variance) # calculate prior boxes widths and heights split_node = create_op_with_const_inputs( graph, VariadicSplit, {1: int64_array(2), 2: int64_array([1, 1, 1, 1])}, {'out_ports_count': 4}, priors_scale_node) priors_width_node = Sub(graph, dict(name=split_node.name + '/sub_2-0_') ).create_node([(split_node, 2), (split_node, 0)]) priors_height_node = Sub(graph, dict(name=split_node.name + '/sub_3-1_') ).create_node([(split_node, 3), (split_node, 1)]) # concat weights and heights into a single tensor and multiple with the box coordinates regression values # WA with 3 Concats instead of 1 for keeping model reshapable # concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1, # 'in_ports_count': 4}).create_node( # [priors_width_node, priors_height_node, priors_width_node, priors_height_node]) concat_1 = Concat(graph, {'name': 'concat_width_height', 'axis': -1, 'in_ports_count': 2}).create_node([priors_width_node, priors_height_node]) concat_2 = Concat(graph, {'name': 'concat_width_height_width', 'axis': -1, 'in_ports_count': 2}).create_node([concat_1, priors_width_node]) concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1, 'in_ports_count': 2} ).create_node([concat_2, priors_height_node]) applied_width_height_regressions_node = Mul(graph, {'name': 'final_regressions'}).create_node( [concat_width_height_node, match.single_input_node(0)[0]]) # reshape to 2D tensor as Inference Engine Detection Output layer expects reshape_regression_node = create_op_node_with_second_input(graph, Reshape, int64_array([0, -1]), dict(name='reshape_regression'), applied_width_height_regressions_node) detection_output_op = DetectionOutput(graph, match.custom_replacement_desc.custom_attributes) # get nms from the original network iou_threshold = None nms_nodes = graph.get_op_nodes(op='NonMaxSuppression') if len(nms_nodes) > 0: # it is highly unlikely that for different classes NMS has different # moreover DetectionOutput accepts only scalar values for iou_threshold (nms_threshold) iou_threshold = nms_nodes[0].in_node(3).value if iou_threshold is None: raise Error('During {} `iou_threshold` was not retrieved from RetinaNet graph'.format(self.replacement_id)) detection_output_node = detection_output_op.create_node( [reshape_regression_node, reshape_classes_node, priors], dict(name=detection_output_op.attrs['type'], nms_threshold=iou_threshold, clip_after_nms=1, normalized=1, variance_encoded_in_target=0, background_label_id=1000)) # As outputs are replaced with a postprocessing node, outgoing tensor names are no longer # correspond to original tensors and should be removed from output->Result edges out_nodes = [] for out in range(match.outputs_count()): out_nodes.append(match.output_node(out)[0]) clear_tensor_names_info(out_nodes) return {'detection_output_node': detection_output_node}