コード例 #1
0
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, outputs: list, output_dir: str,
          scale: float, is_binary: bool,
          user_shapes: [None, list, np.array] = None,
          mean_scale_values: [dict, list] = ()):
    """
    Convert TF GraphDef object to NetworkX representation.
    The resulting graph is still TF-specific and needs normalization passes to be applied.
    The specific TF structure assumes each GraphDef node is converted to a single
    NetworkX node, node id is an original TF node name, and edges go directly from one op   to another op.
    """
    meta_info = get_meta_info(argv)

    if argv.tensorflow_custom_layer_libraries:
        libraries = argv.tensorflow_custom_layer_libraries.split(',')
        for library in libraries:
            log.info('Loading library "{}" with custom operations'.format(library))
            tf.load_op_library(library)

    graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary,
                                                    checkpoint=argv.input_checkpoint,
                                                    user_output_node_names_list=outputs,
                                                    model_dir=argv.saved_model_dir,
                                                    meta_graph_file=argv.input_meta_graph,
                                                    saved_model_tags=argv.saved_model_tags)

    try:
        tf.import_graph_def(graph_def, name='')
    except:
        log.warning("TensorFlow post-processing of loaded model was unsuccessful. "
                    "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                    "required for all models."
                    "It likely means that the original model is ill-formed. "
                    "Model Optimizer will continue converting this model.")

    log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

    if argv.tensorboard_logdir:
        tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

    update_extractors_with_extensions(tf_op_extractors)

    try:
        graph = protobuf2nx(graph_def)
        graph.__setattr__('name', output_model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'tf'
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4

        if graph.graph['ir_version'] == 2:
            # When the deprecated IR version was requested,
            # we configure only those phases that can lead to
            # functional regressions in the version 2.
            # BasicLSTMCell is one such transformation; when it is turned off,
            # the body of TF basic_lstm_cell is converted as-is in a decomposed form,
            # and should work in version 2.
            BasicLSTMCell.enabled = False

        # placeholder for request from a transformation pass to repeat the entire conversion
        graph.graph['repeat_conversion'] = False

        graph = restore_edges(graph, get_tf_edges)
        graph = remove_control_dependency_inputs(graph)
        # extract basic attributes earlier to enable some passes that relies on them before full attribute
        # extractor is called
        extract_node_attrs(graph, lambda node: (True, common_tf_fields(node)))
    except Exception as e:
        raise Error(
            'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e

    check_empty_graph(graph, 'protobuf2nx. It may happen due to problems with loaded model')

    packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack(graph, user_shapes, outputs,
                                                                              argv.freeze_placeholder_with_value)
    if freeze_placeholder is not None:
        FreezePlaceholderValue.enabled = True
        FreezePlaceholderValue.replacement_dict = freeze_placeholder
        update_registration()

    GemmResolver.enabled = False

    inputs = list(packed_user_shapes.keys()) if packed_user_shapes is not None and isinstance(packed_user_shapes,
                                                                                              dict) else None
    graph.graph['inputs'] = inputs  # save user defined inputs for other extensions

    output_op_nodes = add_output_ops(graph, packed_outputs, inputs=packed_user_shapes)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)

    # this call of 'graph_clean_up' removes child nodes of outputs which is useful when custom output is specified
    graph_clean_up_tf(graph)

    check_empty_graph(graph, 'add_output_ops and add_input_ops. It may happen due to absence of \'Placeholder\' layer '
                             'in the model')

    variables_to_constants(graph, variables_values)
    del variables_values
    graph_clean_up_tf(graph)

    if argv.tensorflow_custom_operations_config_update:
        if update_custom_replacement_config_file(graph, argv.tensorflow_custom_operations_config_update):
            return 0
        else:
            return 1

    unsupported_ops_to_offload_to_tf = list()

    MAX_ITERATIONS = 5
    cur_iteration = 0
    while cur_iteration < MAX_ITERATIONS:
        graph_copy = copy.deepcopy(graph)  # create a copy of graph for the case when some ops are unsupported

        if argv.tensorflow_subgraph_patterns is not None:
            csc.replace_subgraph_calls(graph, argv.tensorflow_subgraph_patterns)

        if argv.tensorflow_operation_patterns is not None:
            csc.offload_operations_to_tf(graph, argv.tensorflow_operation_patterns)

        if argv.offload_unsupported_operations_to_tf and len(unsupported_ops_to_offload_to_tf):
            csc.offload_unsupported_operations_to_tf(graph, unsupported_ops_to_offload_to_tf)

        extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))

        if argv.tensorflow_use_custom_operations_config is not None:
            registry = CustomReplacementRegistry()
            registry.add_custom_replacement_description_from_config(argv.tensorflow_use_custom_operations_config)

            # automatically generate sub-classes for custom replacements that replace sub-graph with a single node
            for replacement_desc in registry.get_all_replacements_descriptions():
                if replacement_desc.has('op'):
                    type('FrontReplacementFromConfigFileOp' + replacement_desc.op, (FrontReplacementFromConfigFileOp,),
                         {'replacement_id': replacement_desc.id})
            update_registration()

        override_placeholder_shapes(graph, packed_user_shapes)

        # the user shapes are used to convert TensorFlow Object Detection API models
        graph.graph['user_shapes'] = packed_user_shapes
        class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)

        override_batch(graph, argv.batch)

        create_tensor_nodes(graph)
        graph_clean_up_tf(graph)

        remove_output_ops(graph)
        partial_infer(graph)
        delete_control_flow_edges(graph)

        replacer = AddIsCyclicAttribute()
        replacer.find_and_replace_pattern(graph)

        # TENSOR ITERATOR CREATING BEGINS
        if graph.graph['is_cyclic']:
            replacer = DeleteSelect()
            replacer.find_and_replace_pattern(graph)

            replacer = SmartInputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = SmartOutputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = LoopConditionMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = SimpleConditionMather()
            replacer.find_and_replace_pattern(graph)

            replacer = BackEdgesMatching()
            replacer.find_and_replace_pattern(graph)

            replacer = ConditionChecks()
            replacer.find_and_replace_pattern(graph)

        delete_not_executable(graph)
        graph_clean_up_tf(graph)
        if graph.graph['is_cyclic']:
            replacer = SimpleInputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = BackEdgeSimpleInputMatcher()
            replacer.find_and_replace_pattern(graph)

            # Here will be optimizing path (ops after Enter and before body take out of body)

            replacer = TensorIteratorMerge()
            replacer.find_and_replace_pattern(graph)
        # TENSOR ITERATOR CREATING ENDS

        check_for_cycle(graph)

        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
        check_empty_graph(graph, 'partial_infer')

        csc.prepare_tf_call_nodes(graph)
        graph_clean_up_tf(graph)

        duplicate_shared_weights(graph)

        input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
        graph_clean_up_tf(graph)
        check_empty_graph(graph, 'add_input_ops')

        change_placeholders_types_to_FP32(graph)

        scale_input(graph, scale)
        add_mean_scale_values(graph, mean_scale_values)

        convert_dilated_convolution(graph)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        l2_norm_to_norm(graph)
        graph_clean_up_tf(graph)

        remove_op_nodes(graph, {'identity': True})
        remove_useless_split(graph)

        class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)

        mean_to_avgpool(graph)
        convert_nasnet(graph)

        fuse_pad(graph)
        graph_clean_up_tf(graph)

        convert_matmul_to_fully_connected(graph)

        # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
        for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing))

        # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
        # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
        convert_batch_norm(graph)
        graph_clean_up_tf(graph)

        if not argv.disable_fusing:
            # Converting ScaleShift layer to Mul->Add
            for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

            # Fusing the sequences of Mul/Add operations
            for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

            # Fusing linear operation to Convolution
            for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        if not argv.disable_gfusing:
            grouped_convolutions_fusing(graph)
            graph_clean_up_tf(graph)
            if not argv.disable_fusing:
                fuse_linear_ops(graph)
                graph_clean_up_tf(graph)

        # Converting Mul->Add to ScaleShift node
        for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift_or_power)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, convert_mul_add_to_power)

        # Need to eliminate dead nodes before doing update_fully_connected_shapes
        # because update_fully_connected_shapes does partial inference and dead
        # nodes will lead to sporadic failures.
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
        for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes)

        for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu)
        graph_clean_up_tf(graph)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, convert_reshape)
        for_graph_and_each_sub_graph_recursively(graph, convert_squeeze)

        for_graph_and_each_sub_graph_recursively(graph, convert_add_to_scaleshift)  # scale = 1
        for_graph_and_each_sub_graph_recursively(graph, convert_mul_to_scaleshift)  # biases = 0

        if argv.reverse_input_channels:
            reverse_input_channels(graph)

        if argv.move_to_preprocess:
            move_scaleshift_to_preprocess(graph)
            graph_clean_up_tf(graph)

        for_graph_and_each_sub_graph_recursively(graph, fuse_sequence_of_reshapes)

        pattern = EltwiseInputNormalize()
        pattern.find_and_replace_pattern(graph)

        conv_flatten_concat(graph)

        for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation)
        for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations)
        for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs)
        for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs)

        for_graph_and_each_sub_graph_recursively(graph, repack_fully_connected_weights_nhwc_to_nchw)
        for_graph_and_each_sub_graph_recursively(graph, transpose_fully_connected_weights)

        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        if argv.offload_unsupported_operations_to_tf:
            unsupported_ops_to_offload_to_tf = find_unsupported_ops(graph)
            if len(unsupported_ops_to_offload_to_tf) == 0:
                log.info('All operations are supported! Exit from the loop.')
                if not need_to_repeat_conversion(graph):
                    break
            else:
                print('After {} iteration there are {} unsupported ops'.format(cur_iteration + 1,
                                                                               len(unsupported_ops_to_offload_to_tf)))
        else:
            if not need_to_repeat_conversion(graph):
                break

        graph = graph_copy
        cur_iteration += 1

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
コード例 #2
0
ファイル: openvino_mo.py プロジェクト: yurivict/onnxruntime
def driver_R5(onnx_modelproto_bytes,
              precision: str,
              output_model_name: str,
              outputs: list,
              output_dir: str,
              scale: float,
              user_shapes: [None, list, np.array] = None,
              mean_scale_values: [dict, list] = ()):

    try:
        model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes))
    except Exception as e:
        print("[python] onnx exception: ", str(e))

    model_graph = model_proto.graph  # pylint: disable=no-member
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug(
        "Number of all input ports (not true inputs) in graph_def: {}".format(
            len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(
        len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(
        len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['ir_version'] = 4
        extract_node_attrs(graph, lambda node:
                           (True, common_onnx_fields(node)))
    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". '
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44), model_file_name, str(e)) from e
    check_empty_graph(
        graph, 'protobuf2nx. It may happen due to problems with loaded model')
    packed_user_shapes, packed_outputs, _ = user_data_repack(
        graph, user_shapes, outputs, None)

    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)

    graph_clean_up(graph)
    check_empty_graph(graph, 'add_output_ops and add_input_ops')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)

    create_tensor_nodes(graph)
    graph_clean_up(graph)

    override_placeholder_shapes(graph, packed_user_shapes)

    graph_clean_up(graph)
    remove_op_nodes(graph, {'op': 'Identity'})

    graph_clean_up(graph)

    remove_output_ops(graph)

    partial_infer(graph)
    graph_clean_up(graph)
    check_empty_graph(graph, 'partial_infer')

    input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_input_ops')

    scale_input(graph, scale)
    add_mean_scale_values(graph, mean_scale_values)

    convert_dilated_convolution(graph)
    graph_clean_up(graph)

    graph_clean_up(graph)

    remove_op_nodes(graph, {'op': 'Identity'})
    remove_useless_split(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    convert_gemm_to_fully_connected(graph)
    NormalizeFullyConnected().find_and_replace_pattern(graph)

    fuse_pad(graph)
    graph_clean_up(graph)

    convert_batch_norm(graph)
    graph_clean_up(graph)

    convert_scale_shift_to_mul_add(graph)
    graph_clean_up(graph)

    fuse_mul_add_sequence(graph)
    graph_clean_up(graph)

    fuse_linear_ops(graph)
    graph_clean_up(graph)

    grouped_convolutions_fusing(graph)
    graph_clean_up(graph)

    fuse_linear_ops(graph)
    graph_clean_up(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up(graph)

    convert_mul_add_to_power(graph)
    graph_clean_up(graph)

    convert_reshape(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    fuse_pad(graph)
    graph_clean_up(graph)

    fuse_sequence_of_reshapes(graph)
    graph_clean_up(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    weights, xml_string = prepare_emit_ir(graph=graph,
                                          data_type=precision,
                                          output_dir=output_dir,
                                          output_model_name=output_model_name,
                                          meta_info={'unset': []})

    return weights, xml_string
コード例 #3
0
def driver(argv: argparse.Namespace, input_model: str, output_model_name: str, outputs: list, output_dir: str,
           scale: float,
           placeholder_shapes: [None, list, np.array] = None,
           mean_scale_values: [dict, list] = ()):
    meta_info = get_meta_info(argv)

    try:
        model_nodes, model_params, model_name, iteration_number = load_symbol_def(input_model, argv.input_symbol,
                                                                                  argv.input,
                                                                                  argv.nd_prefix_name,
                                                                                  argv.pretrained_model_name,
                                                                                  argv.legacy_mxnet_model)
    except (ValueError, mxnet.base.MXNetError) as e:
        raise FrameworkError(
            'The following error happened while loading mxnet model {}: {}. ' +
            refer_to_faq_msg(53),
            input_model,
            str(e)
        ) from e

    if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd:
        save_params_file(model_name, model_params._arg_params, model_params._aux_params, iteration_number)

    update_extractors_with_extensions(mxnet_op_extractors)
    graph = symbol2nx(model_nodes, model_params, argv.input)
    check_empty_graph(graph, 'symbol2nx. It may happen due to problems with loaded model')

    graph.__setattr__('name', output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'mxnet'
    graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4
    graph = extract_node_attrs(graph, mxnet_op_extractor)
    check_softmax_node_inputs(graph)

    user_shapes, packed_outputs, _ = user_data_repack(graph, placeholder_shapes, outputs, None)
    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, user_shapes, True)

    try:
        override_placeholder_shapes(graph, user_shapes, argv.batch)
    except ValueError as err:
        raise Error(
            'The following error happened while processing input shapes: {}. ' +
            refer_to_faq_msg(54),
            str(err)
        ) from err
    check_empty_graph(graph, 'add_output_ops and add_input_ops')

    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    add_input_data_to_prior_boxes(graph, argv.input)

    graph = create_tensor_nodes(graph)

    graph_clean_up(graph)
    remove_output_ops(graph)
    mark_outputs(graph)
    remove_output_ops(graph)

    graph_clean_up(graph)

    log.debug("After removing specific nodes for output")

    print_graph_stat(graph)

    graph = partial_infer(graph)
    graph_clean_up(graph)
    check_empty_graph(graph, 'partial_infer')

    duplicate_shared_weights(graph)

    scale_input(graph, scale)
    add_mean_scale_values(graph, mean_scale_values)

    remove_op_nodes(graph, {'identity': True})

    graph_clean_up(graph)

    class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)
    fuse_pad(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    convert_batch_norm(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        convert_scale_shift_to_mul_add(graph)
        graph_clean_up(graph)

        # Fusing the sequences of Mul/Add operations
        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        # Fusing linear operation to Convolution
        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    fuse_pad(graph)

    # Converting Mul->Add to ScaleShift node
    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up(graph)

    convert_mul_add_to_power(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)
    return 0
コード例 #4
0
ファイル: caffe.py プロジェクト: pc2/CustoNN2
def driver(argv: argparse.Namespace,
           proto_file_name: str,
           model_file_name: str,
           output_model_name: str,
           outputs: list,
           output_dir: str,
           scale: float,
           user_shapes: [None, list, np.array] = None,
           mean_scale_values: [dict, list] = (),
           mean_file: str = "",
           mean_file_offsets: tuple = None,
           custom_layers_mapping_path: str = None):
    meta_info = get_meta_info(argv)

    FusePermutesSequence.enabled = False

    proto, model = loader.load_caffe_proto_model(proto_file_name,
                                                 model_file_name)

    update_extractors_with_extensions(
        caffe_type_extractors, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.disable_flattening_optional_params if hasattr(
            argv, 'disable_flattening_optional_params') else False)

    try:
        graph, original_shapes = loader.caffe_pb_to_nx(proto, model)
    except ValueError as e:
        raise Error(
            'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11),
            str(e)) from e

    log.debug("After caffe_pb_to_nx")
    print_graph_stat(graph)
    check_empty_graph(graph, 'load_caffe_proto_model')

    graph.__setattr__('proto_path', proto_file_name)
    graph.__setattr__('caffemodel_path', model_file_name)
    graph.__setattr__('name',
                      getattr(proto, 'name', None) or output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'caffe'
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4

    extract_node_attrs(graph, lambda node: (True, common_caffe_fields(node)))

    log.debug("After adding specific nodes for outputs")
    print_graph_stat(graph)

    custom_layers_map = custom_layers_mapping.load_layers_xml(
        custom_layers_mapping_path)
    custom_layers_mapping.update_extractors(
        caffe_type_extractors,
        custom_layers_map, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.enable_flattening_nested_params if hasattr(
            argv, 'enable_flattening_nested_params') else False)

    extract_node_attrs(
        graph, lambda node: caffe_extractor(
            node, check_for_duplicates(caffe_type_extractors)))

    log.debug("After extract_node_attr")
    print_graph_stat(graph)

    packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack(
        graph, user_shapes, outputs, argv.freeze_placeholder_with_value)
    if argv.freeze_placeholder_with_value is not None:
        FreezePlaceholderValue.enabled = True
        FreezePlaceholderValue.replacement_dict = freeze_placeholder
        class_registration.update_registration([FrontReplacementSubgraph])
    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)
    override_placeholder_shapes(graph, packed_user_shapes)
    override_batch(graph, argv.batch)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_output_ops and add_input_ops')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)

    graph = create_tensor_nodes(graph)

    log.debug("After create_tensor_nodes")
    print_graph_stat(graph)

    remove_op_nodes(graph, {'op': 'Identity'})
    remove_output_ops(graph)
    graph_clean_up(graph)

    log.debug("After removing specific nodes for output")
    print_graph_stat(graph)

    # you need to pass required network outputs here
    # but we don't have a way yet, so just passing all discovered sinks
    mark_outputs(graph)
    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)

    graph = partial_infer(graph)
    log.debug("After partial_infer")
    print_graph_stat(graph)
    check_empty_graph(graph, 'partial_infer')
    duplicate_shared_weights(graph)

    input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_input_ops')
    scale_input(graph, scale)

    add_mean_scale_values(graph, mean_scale_values)

    log.debug("Split multi input convolutions")
    convert_multi_input_conv(graph)

    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)

    remove_op_nodes(graph, {'op': 'Dropout'})
    remove_op_nodes(graph, {'phase': 0})
    graph_clean_up(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    mean_to_avgpool(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    #need this pass even without fusing to convert scale with 2 inputs
    convert_scale_shift_to_mul_add(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        convert_bn_to_mul_add(graph)
        graph_clean_up(graph)

        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    convert_matmul_to_fully_connected(graph)
    batch_norm_fuse(graph)
    convert_mul_add_to_power(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    fuse_sequence_of_reshapes(graph)

    input_names = find_inputs(graph)
    mf = []
    try:
        if mean_file and len(original_shapes) == 1:
            mf = loader.parse_mean(mean_file, original_shapes[input_names[0]],
                                   mean_file_offsets)
        elif mean_file:
            raise Error(
                'Mean file for topologies with multiple inputs is not supported. '
                + refer_to_faq_msg(9))
    except ValueError as e:
        raise Error(
            'Cannot load or process mean file: value error {}. ' +
            refer_to_faq_msg(10), str(e)) from e

    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    mean_data=mf,
                    input_names=input_names,
                    meta_info=meta_info)
    return 0
コード例 #5
0
def driver(argv: argparse.Namespace,
           model_file_name: str,
           output_model_name: str,
           outputs: list,
           output_dir: str,
           scale: float,
           user_shapes: [None, list, np.array] = None,
           mean_scale_values: [dict, list] = ()):

    meta_info = get_meta_info(argv)

    model_proto = load_onnx_model(model_file_name)
    model_graph = model_proto.graph  # pylint: disable=no-member
    #print(model_graph)
    #assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported"
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug(
        "Number of all input ports (not true inputs) in graph_def: {}".format(
            len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(
        len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(
        len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4
        # extract basic attributes earlier to enable some passes that relies on them before full attribute
        # extractor is called
        extract_node_attrs(graph, lambda node:
                           (True, common_onnx_fields(node)))
    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e
    check_empty_graph(
        graph, 'protobuf2nx. It may happen due to problems with loaded model')
    packed_user_shapes, packed_outputs, _ = user_data_repack(
        graph, user_shapes, outputs, None)

    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)

    # this call of 'graph_clean_up' removes child nodes of outputs which is useful when custom output is specified
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_output_ops and add_input_ops')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)

    create_tensor_nodes(graph)
    graph_clean_up(graph)

    override_placeholder_shapes(graph, packed_user_shapes)
    override_batch(graph, argv.batch)

    graph_clean_up(graph)
    remove_op_nodes(graph, {'op': 'Identity'})

    graph_clean_up(graph)

    remove_output_ops(graph)

    partial_infer(graph)
    graph_clean_up(graph)
    check_empty_graph(graph, 'partial_infer')

    input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_input_ops')
    #change_placeholders_types_to_FP32(graph)

    scale_input(graph, scale)
    add_mean_scale_values(graph, mean_scale_values)

    convert_dilated_convolution(graph)
    graph_clean_up(graph)

    graph_clean_up(graph)

    remove_op_nodes(graph, {'op': 'Identity'})
    remove_useless_split(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    convert_gemm_to_fully_connected(graph)
    NormalizeFullyConnected().find_and_replace_pattern(graph)

    fuse_pad(graph)
    graph_clean_up(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
    convert_batch_norm(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        convert_scale_shift_to_mul_add(graph)
        graph_clean_up(graph)

        # Fusing the sequences of Mul/Add operations
        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        # Fusing linear operation to Convolution
        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_gfusing:
        grouped_convolutions_fusing(graph)
        graph_clean_up(graph)
        if not argv.disable_fusing:
            fuse_linear_ops(graph)
            graph_clean_up(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up(graph)

    convert_mul_add_to_power(graph)
    graph_clean_up(graph)

    convert_reshape(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    fuse_pad(graph)
    graph_clean_up(graph)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    fuse_sequence_of_reshapes(graph)
    graph_clean_up(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0