コード例 #1
0
ファイル: LRNReplacer.py プロジェクト: pc2/CustoNN2
    def replace_sub_graph(self, graph: nx.MultiDiGraph, match: dict):
        node = match['op']

        if not node.has_valid('bias') or (node.has_valid('bias')
                                          and node.bias == 1):
            return

        # Calculate scale value & create Const op
        scale_value = np.array(1. / (pow(node.bias, node.beta)))
        node.alpha /= node.bias
        const_node = Const(graph,
                           dict(value=scale_value, shape=scale_value.shape))

        # Get all outputs for LRN layer
        out_nodes = [node for node in node.out_nodes().values()]

        # Create Mul node with inputs
        mul_node = Mul(graph, dict(name=node.id + "/Mul_"))
        mnode = mul_node.create_node(inputs=[node, const_node.create_node()])

        # Move edges from LRN to Mul node
        for out_node in out_nodes:
            edge_attrs = graph.get_edge_data(node.id, out_node.id)[0]
            graph.remove_edge(node.id, out_node.id)
            graph.add_edges_from([(mnode.id, out_node.id, edge_attrs)])
コード例 #2
0
def add_convolution_to_swap_xy_coordinates(graph: Graph, input_node: Node,
                                           coordinates_size: int):
    """
    The function add convolution node after the node 'input_node' to swap xy coordinates of the boxes produced
    by the node 'input_node'. It is expected that box coordinates are located in the fastest changing dimension of the
    'input_node' output, i.e. the input tensor could be reshaped to [num_boxes, 4] or [num_boxes, 5]. If the size is 5,
    then the 0-th element for each of num_boxes blocks is not changed and element 1 is swapped with element 2, element 3
    is swapped with element 4. This is the case when boxes coordinates are produced by the layer "Proposal". The exact
    amount of elements in each block is equal to the 'coordinates_size' parameter.
    :param graph: graph to operate on.
    :param input_node: node producing boxes coordinates.
    :param coordinates_size: integer value equal to 4 or 5.
    :return convolution node that swaps coordinates.
    """
    # swap of input tensor with 4 or 5 numbers describing boxes are supported
    assert (coordinates_size in [4, 5])

    input_reshape_4d_node = create_op_node_with_second_input(
        graph, Reshape, int64_array([-1, 1, 1, coordinates_size]),
        dict(name=input_node.name + '/reshape_4d'), input_node)
    mark_input_as_in_correct_layout(input_reshape_4d_node, 0)
    # do not mark second input because the reshape works in initial model layout and needs to be transformed to NCHW
    mark_output_as_in_correct_layout(input_reshape_4d_node, 0)

    if coordinates_size == 5:
        # zero indexed element is not box coordinate ("batch id" in case of Proposal)
        conv_filter_data = np.array(
            np.array([[[[1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0],
                        [0, 0, 0, 0, 1], [0, 0, 0, 1, 0]]]],
                     dtype=np.float32))
    else:
        conv_filter_data = np.array(
            np.array(
                [[[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]]],
                dtype=np.float32))

    conv_filter_data = np.transpose(conv_filter_data, [2, 3, 0, 1])

    conv_filter_const_op = Const(graph, dict(value=conv_filter_data))
    conv_filter_const_node = conv_filter_const_op.create_node(
        [], dict(name=input_node.name + '/weights'))

    conv_op = Convolution(
        graph, {
            'bias_addable': True,
            'channel_dims': np.array([3]),
            'batch_dims': np.array([0]),
            'input_feature_channel': 0,
            'output_feature_channel': 1,
            'group': 1,
            'layout': 'NHWC',
        })
    return conv_op.create_node([input_reshape_4d_node, conv_filter_const_node],
                               dict(name=input_node.name + "/conv"))
コード例 #3
0
ファイル: softmax.py プロジェクト: zoeysgithub/openvino
 def replace_sub_graph(self, graph: Graph, match: dict):
     node = match['softmax']
     if 'temperature' in node and node['temperature'] != 1.0:
         in_node = node.in_node()
         out_nodes = [node for node in node.out_nodes().values()]
         graph.remove_edge(node.in_node().id, node.id)
         temperature = np.array([1.0 / node.temperature])
         scalar_value_op = Const(graph, dict(value=temperature, shape=temperature.shape,
                                             symbol_dict={'name': node.id + '/const'}))
         mul_op = Mul(graph, dict(name=node.id + '/mul_', symbol_dict={'name': node.id + '/mul_'}))
         mul_node = mul_op.create_node(inputs=[in_node, scalar_value_op.create_node()])
         edge_attrs = graph.get_edge_data(node.id, out_nodes[0].id)[0]
         graph.add_edges_from([(mul_node.id, node.id, edge_attrs)])
コード例 #4
0
    def replace_op(self, graph: Graph, node: Node):
        in_node = node.in_node()
        out_nodes = [node for node in node.out_nodes().values()]
        graph.remove_edge(node.in_node().id, node.id)
        scalar_value_op = Const(graph, dict(value=node.scalar, shape=node.scalar.shape, symbol_dict={'name': node.id + '/const'}))
        mul_op = Mul(graph, dict(name=node.id + '/mul_', symbol_dict={'name': node.id + '/mul_'}))
        mul_node = mul_op.create_node(inputs=[in_node, scalar_value_op.create_node()])

        for out_node in out_nodes:
            edge_attrs = graph.get_edge_data(node.id, out_node.id)[0]
            graph.remove_edge(node.id, out_node.id)
            graph.add_edges_from([(mul_node.id, out_node.id, edge_attrs)])

        return [mul_node.id]
コード例 #5
0
ファイル: image_scaler.py プロジェクト: pc2/CustoNN2
    def replace_sub_graph(self, graph: nx.MultiDiGraph, match: dict):
        # This replacer replace ImageScalar operation to Mul->Add sequence
        # Also it check that weights and biases are good
        op = match['op']

        # Check that weights and biases are not useless
        has_bias, has_weights = True, True
        if all([x == 1 for x in np.nditer(op.scale)]):
            has_weights = False
        if all([x == 0 for x in np.nditer(op.bias)]):
            has_bias = False

        # Get all outputs for op node
        out_nodes = [node for node in op.out_nodes().values()]

        assert len(op.in_nodes()) == 1

        last_node = op.in_node()
        # Create Mul & Add nodes
        if has_weights:
            mul_weights = Const(graph, dict(value=op.scale, shape=op.scale.shape))
            mul_op = Mul(graph, dict(name=op.id + '/mul_'))
            last_node = mul_op.create_node(inputs=[last_node, mul_weights.create_node()])

        if has_bias:
            add_bias = Const(graph, dict(value=op.bias, shape=op.bias.shape))
            add_op = Add(graph, dict(name=op.id + '/add_'))
            last_node = add_op.create_node(inputs=[last_node, add_bias.create_node()])

        # Move edges from ImageScaler to last_node (Mul or Add)
        for out_node in out_nodes:
            edge_attrs = graph.get_edge_data(op.id, out_node.id)[0]
            graph.remove_edge(op.id, out_node.id)
            graph.add_edges_from([(last_node.id, out_node.id, edge_attrs)])

        # Disconnect ImageScalar node
        graph.remove_edge(op.in_node().id, op.id)