コード例 #1
0
def apply_nhwc_to_nchw_permutation(graph: Graph):
    # Add NHWC to NCHW permutation for all data nodes (only for nodes without permutation)
    if graph.graph['layout'] == 'NCHW':
        return

    for node in graph.get_data_nodes():
        if node.has_and_set('nchw_layout'):
            continue

        # Get NHWC to NCHW permutation for N dims, where N = len(node.shape)
        permutation = PermuteAttrs().get_nhwc_to_nchw_permutation(
            len(node.shape))

        # Check that data node already has permutation
        skip_permutation = False
        for in_node in node.in_nodes():
            edge_attrs = node.graph.get_edge_data(in_node.id, node.id)[0]
            if 'permutation' in edge_attrs:
                skip_permutation = True
        for out_node in node.out_nodes():
            edge_attrs = node.graph.get_edge_data(node.id, out_node.id)[0]
            if 'permutation' in edge_attrs:
                skip_permutation = True

        if skip_permutation:
            continue

        # Set permutation to all in/out edges
        for in_node in node.in_nodes():
            PermuteAttrs.set_permutation(in_node, node, permutation)

        for out_node in node.out_nodes():
            PermuteAttrs.set_permutation(node, out_node, permutation)
コード例 #2
0
    def find_and_replace_pattern(self, graph: Graph):
        for node in graph.get_data_nodes():
            if node.has_and_set('nchw_layout'):
                continue

            # Get NHWC to NCHW permutation for N dims, where N = len(node.shape)
            permutation = PermuteAttrs().get_nhwc_to_nchw_permutation(
                len(node.shape))

            # Check that data node already has permutation
            skip_permutation = False
            for in_node in node.in_nodes():
                edge_attrs = node.graph.get_edge_data(in_node.id, node.id)[0]
                if 'permutation' in edge_attrs:
                    skip_permutation = True
            for out_node in node.out_nodes():
                edge_attrs = node.graph.get_edge_data(node.id, out_node.id)[0]
                if 'permutation' in edge_attrs:
                    skip_permutation = True

            if skip_permutation:
                continue

            # Set permutation to all in/out edges
            for in_node in node.in_nodes():
                PermuteAttrs.set_permutation(in_node, node, permutation)

            for out_node in node.out_nodes():
                PermuteAttrs.set_permutation(node, out_node, permutation)
コード例 #3
0
def conv_flatten_concat_action(graph: Graph, match: dict):
    assert graph.graph['layout'] == 'NHWC'
    reshape_node = match['reshape']
    reshape_data_node = match['reshape_data']
    conv_name = match['conv'].name
    conv_data_node = match['conv_data']
    # the pattern should be applied only in case when the reshape operation changes number of dimensions
    if len(reshape_data_node.shape) == len(
            conv_data_node.shape) or reshape_node.has_and_set('nchw_layout'):
        return

    if len(reshape_data_node.out_nodes()) == 1 and reshape_data_node.out_node().has_valid('type') and \
        reshape_data_node.out_node().type == 'FullyConnected' and \
            can_repack_fully_connected_weights_nhwc_to_nchw(reshape_data_node.out_node()):
        log.info(
            'There is a FullyConnected layer after the node "{}" which weights will be repacked. So there is no '
            'need to insert Permute'.format(reshape_node.soft_get('name')))
        return
    graph.remove_edge(conv_data_node.id, reshape_node.id)

    permutation_order = PermuteAttrs.get_nchw_to_nhwc_permutation(
        len(conv_data_node.shape)).perm
    new_permute_op = Permute(graph, {'order': permutation_order})
    permute_data_node = new_permute_op.create_node_with_data(
        [conv_data_node], dict(name=conv_name + '/Permute_'))
    graph.create_edge(permute_data_node, reshape_node)
    # Disable permutation for Reshape and Concat layers attributes
    PermuteAttrs.set_permutation(reshape_node, reshape_data_node, None)
    reshape_node['nchw_layout'] = True
コード例 #4
0
ファイル: inner_product.py プロジェクト: projectceladon/dldt
def caffe_inner_product(node):
    input_shape = node.in_node(0).shape
    if input_shape is None:
        return
    batches = input_shape[0]
    input_channels = np.prod(input_shape[1:])
    if not node.has_valid('out-size'):
        node['out-size'] = (np.prod(node.in_node(1).shape) /
                            input_channels).astype(np.int64)
    output_channels = node['out-size']

    weights_shape = np.array([output_channels, input_channels], dtype=np.int64)

    # In case if original weight layout is IO we transpose them
    if np.array_equal(node.in_node(1).shape, weights_shape[::-1]
                      ) and node.soft_get('transpose_weights') is True:
        node.in_node(1).value = np.transpose(node.in_node(1).value)

    node.out_node().shape = np.array([batches, output_channels],
                                     dtype=np.int64)
    # Back propagation of shape to weights
    node.in_node(1).shape = np.array(weights_shape)
    node.in_node(1).value.shape = node.in_node(1).shape

    mark_input_bins(node)
    assign_dims_to_weights(node.in_node(1), None, 1, 0, 2)
    PermuteAttrs.set_permutation(node.in_node(1), node, None)
コード例 #5
0
    def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        # IE DetectionOutput layer consumes flattened confidences and locations tensors.
        # That is why we add reshapes before them.
        locs_node = match.single_input_node(0)
        conf_node = match.single_input_node(1)
        prior_boxes_node = match.single_input_node(2)

        locs_out_nodes = locs_node[0].out_nodes()
        assert len(locs_out_nodes) == 1
        locs_out_node = locs_out_nodes[list(locs_out_nodes.keys())[0]]
        assert locs_out_node.op == "OpOutput", locs_out_node.op
        graph.remove_node(locs_out_node.id)

        conf_out_nodes = conf_node[0].out_nodes()
        assert len(conf_out_nodes) == 1
        conf_out_node = conf_out_nodes[list(conf_out_nodes.keys())[0]]
        assert conf_out_node.op == "OpOutput", conf_out_node.op
        graph.remove_node(conf_out_node.id)

        # reshape operation to flatten confidence tensor
        reshape_loc_op = Reshape(graph, {'dim': np.array([0, -1])})
        reshape_loc_node = reshape_loc_op.create_node(
            [locs_node], dict(name='DetectionOutput_Reshape_loc_'))

        # reshape operation to flatten confidence tensor
        reshape_conf_op = Reshape(graph, {'dim': np.array([0, -1])})
        reshape_conf_node = reshape_conf_op.create_node(
            [conf_node], dict(name='DetectionOutput_Reshape_conf_'))

        # remove the OpOutput node after the priors node
        assert prior_boxes_node[0].out_node().op == "OpOutput"
        graph.remove_node(prior_boxes_node[0].out_node().id)

        # reshape operation for prior boxes tensor
        reshape_priors_op = Reshape(graph, {'dim': np.array([1, 2, -1])})
        reshape_priors_node = reshape_priors_op.create_node(
            [prior_boxes_node], dict(name='DetectionOutput_Reshape_priors_'))
        # create Detection Output node with three inputs: locations, confidences and prior boxes
        detection_output_op = DetectionOutput(
            graph, match.custom_replacement_desc.custom_attributes)
        detection_output_node = detection_output_op.create_node(
            [reshape_loc_node, reshape_conf_node, reshape_priors_node],
            dict(name=detection_output_op.attrs['type'] + '_'))
        PermuteAttrs.set_permutation(reshape_priors_node,
                                     detection_output_node, None)

        # create Output node to mark DetectionOutput as a graph output operation
        output_op = Output(graph)
        output_op.create_node([detection_output_node], dict(name='sink_'))
        return {}
コード例 #6
0
ファイル: GemmResolver.py プロジェクト: projectceladon/dldt
    def replace_pattern(self, graph: Graph, match: dict):
        if not match['input_0'].has_valid('value') and not match['input_1'].has_valid('value') or \
                not match['input_0'].has_valid('value') and match['input_1'].has_valid('value') and match[
            'input_1'].shape.size > 2:
            match['fc']['type'] = 'GEMM'
        elif not match['input_0'].has_valid('value') and match['input_1'].has_valid('value'):
            match['fc']['type'] = 'FullyConnected'
            node = match['fc']
            mark_input_bins(node)
            weights_node = match['input_1']
            assign_dims_to_weights(weights_node, None, 0, 1, 2)
            PermuteAttrs.set_permutation(weights_node, node, PermuteAttrs.Permutation(perm=int64_array([1, 0]),
                                                                                      inv=int64_array([0, 1])))
            weights_shape = weights_node.shape

            node['out-size'] = weights_shape[1]
コード例 #7
0
ファイル: matmul.py プロジェクト: ChaYe001/LLvisionCompile
def tf_matmul_infer(node):
    assert (len(node.in_nodes()) == 2)

    shapes = [node.in_node(i).shape.copy() for i in range(2)]
    log.debug('matmul shapes: {}'.format(shapes))
    if any(s is None or len(s) < 2 for s in shapes):
        log.error("MatMul wasn't able to infer shape")
        return

    if node.transpose_a:
        perm = np.array(range(len(node.in_node(0).shape)), dtype=np.int64)
        perm[-1], perm[-2] = perm[-2], perm[-1]
        inv = PermuteAttrs.get_inverse_permutation(perm)
        permutation = PermuteAttrs.Permutation(perm=perm, inv=int64_array(inv))
        PermuteAttrs.set_permutation(node.in_node(0), node, permutation)
        shapes[0] = shapes[0][perm]

    if node.transpose_b:
        perm = np.array(range(len(node.in_node(1).shape)), dtype=np.int64)
        perm[-1], perm[-2] = perm[-2], perm[-1]
        inv = PermuteAttrs.get_inverse_permutation(perm)
        permutation = PermuteAttrs.Permutation(perm=perm, inv=int64_array(inv))
        PermuteAttrs.set_permutation(node.in_node(1), node, permutation)
        shapes[1] = shapes[1][perm]

    if any(shapes[0][:-2] != shapes[1][:-2]) or shapes[0][-1] != shapes[1][-2]:
        log.error(
            "MatMul wasn't able to infer shape because input dimensions are not compatible"
        )
        return

    shape_tuple = (np.array(shapes[0][:-1], dtype=np.int64),
                   np.array([shapes[1][-1]], dtype=np.int64))
    if len(shapes[0]) > 2:
        # TODO Investigate case when MatMul have inputs with not matching output dimensions
        # It looks to be a practical case and if we add outer dimensions of the first argument
        # it will lead to incorrect model sometimes. TF documentation is unclear.
        log.warning(
            'Ignored outer dimensions of input tensor for MatMul node: {}'.
            format(node.name))
        # shape_tuple = (shapes[0][:-2], *shape_tuple)

    log.debug('shape_tuple: {}'.format(shape_tuple))
    node.out_node().shape = np.concatenate(shape_tuple)
    node['channel_dims'] = node.out_node().shape.size - 1
    log.debug('matmul shape: {}'.format(node.out_node().shape))
コード例 #8
0
    def infer(node: Node):
        """
        Deconvolution has an input argument that explicitly determines output shape, so in contrast
        to the forward Conv2d we shouldn't infer output shape. We just use this output shape as
        an input shape and pass it to our utilities that computes numeric values for padding.
        They also deliver output shape that is interpreted here as input shape for convolution.
        We need to check that the real input shape and shape inferred by those utility functions match.
        """
        output_shape = np.array(node.in_node(2).value)
        batch = np.array(node.in_node(0).shape)[0]
        output_shape[0] = batch
        kernel_shape = node.in_node(1).shape
        node['kernel_shape'] = kernel_shape
        if output_shape is None or kernel_shape is None or node.spatial_dims is None or node.stride is None:
            return

        if not node.has_valid('kernel_spatial_idx'):
            node['kernel_spatial_idx'] = np.delete(
                [x for x in range(len(kernel_shape))],
                (node.input_feature_channel, node.output_feature_channel))

        if not node.has_valid('dilation'):
            node['dilation'] = np.full([len(output_shape)], 1, dtype=np.int64)

        spatial_dims = node.spatial_dims
        output_spatial = np.array(output_shape[spatial_dims])
        stride_spatial = np.array(node.stride[spatial_dims])
        node['kernel_spatial'] = np.array(
            kernel_shape[node.kernel_spatial_idx])
        node.pad_spatial_shape, input_spatial_for_check = tf_window_op_pad_infer(
            output_spatial, node.kernel_spatial, stride_spatial, node.auto_pad)

        assert all(
            input_spatial_for_check == node.in_node(0).shape[spatial_dims])

        pad = np.zeros((len(output_shape), 2), dtype=np.int64)
        pad[spatial_dims] = node.pad_spatial_shape
        node.pad = pad

        node.output = output_shape[node.channel_dims][0]
        node.output_shape = output_shape
        node.out_node().shape = output_shape

        mark_input_bins(node, ['weights'], 1)
        assign_dims_to_weights(node.in_node(1), node.kernel_spatial_idx,
                               node.input_feature_channel,
                               node.output_feature_channel, len(kernel_shape))

        # OK, now we are sure this is a supported Deconvolution layer
        node.type = 'Deconvolution'
        node.op = 'Deconv2D'

        # Add permute_attrs
        PermuteAttrs.create_permute_attrs(
            node,
            attrs=[
                ('pad', 'input:0'),
                ('stride', 'input:0'),
                ('output_shape', 'input:0'),
                ('batch_dims', 'input:0'),
                ('channel_dims', 'input:0'),
                ('spatial_dims', 'input:0'),
                ('kernel_shape', 'input:1'),
                ('kernel_spatial_idx', 'input:1'),
                ('input_feature_channel', 'input:1'),
                ('output_feature_channel', 'input:1'),
            ])

        PermuteAttrs.set_permutation(
            node.in_node(1), node, node.get_weights_permute
            if node.has_valid('get_weights_permute') else None)
        PermuteInputs().set_input_permutation(node.in_node(2), node, 'input:0',
                                              'shape')

        node['force_precision_in_ports'] = {2: 'int64'}
コード例 #9
0
ファイル: convolution.py プロジェクト: groove-x/openvino
    def infer(node: Node):
        """
        Infers shape of convolution node as it is done in ONNX.
        It is very similar to one that Caffe does, but slightly different.
        We made a complete fork of this function because they are supposed to be
        supported differently by different people.
        Args:
            node: graph convolution node
        """
        input_shape = node.in_node(0).shape
        if input_shape is None:
            return

        # bias_term cannot be deduced earlier for frameworks that represent
        # convolution weights/biases as regular inputs; so the number of inputs
        # is being checked here and restore correct value for bias_term to
        # have the rest of the code unchanged. It will be used after we merge
        # several infer functions for convolution in different FWs to a single one.
        if not node.has_valid('bias_term'):
            node['bias_term'] = len(node.in_nodes()) == 3

        weights_index = node.weights_index if node.has_valid(
            'weights_index') else 1

        # Reshape weights kernel to original shape
        # In case of caffe ot MXNet framework, values for weights has no structed shape like OIHW
        # so we have to reshape weights to normal shape
        # For this case, Convolution node should have attribute reshape_kernel = True
        if node.has_valid('reshape_kernel') and node.reshape_kernel:
            if not (node.has_valid('output') and node.has_valid('channel_dims')
                    and node.has_valid('group')
                    and node.has_valid('kernel_spatial')):
                log.error(
                    'Cannot reshape kernel due to not all required attrs was set to {} node'
                    .format(node.id))
                return
            # layout for Convolution weights is OIHW
            kernel_shape = np.array([
                node.output,
                input_shape[node.channel_dims].item() / node.group, *[
                    node.kernel_spatial[i]
                    for i in range(len(node.kernel_spatial))
                ]
            ],
                                    dtype=np.int64)
            if node.type == 'Deconvolution':  # layout for Deconvolution weights is IOHW
                kernel_shape[[0, 1]] = kernel_shape[[1, 0]]
                #node.input_feature_channel, node.output_feature_channel = node.output_feature_channel, node.input_feature_channel

            if np.prod(kernel_shape) != np.prod(
                    node.in_node(weights_index).value.shape):
                log.error(
                    "Size of weights {} does not match kernel shape: {}\n".
                    format(np.prod(node.in_node(weights_index).value.shape),
                           kernel_shape) +
                    "    Possible reason is wrong channel number in input shape\n"
                )
                raise Error("Cannot reshape weights to kernel shape")

            node.in_node(weights_index).shape = np.array(kernel_shape)
            node.in_node(weights_index).value = np.reshape(
                node.in_node(weights_index).value, kernel_shape)
            node.reshape_kernel = False

        # Pass weights shape to node attribute kernel_shape
        kernel_shape = node.in_node(weights_index).shape
        node['kernel_shape'] = kernel_shape
        # Calculate kernel_spatial_idx and spatial_dims if it is not specified
        # It is necessary for ONNX dut to convolution can be 1D/2D/3D
        if not node.has_valid('kernel_spatial_idx'):
            node['kernel_spatial_idx'] = np.delete(
                [x for x in range(len(kernel_shape))],
                (node.input_feature_channel, node.output_feature_channel))

        if not node.has_valid('spatial_dims'):
            node['spatial_dims'] = np.delete(
                [x for x in range(len(input_shape))],
                (node.channel_dims[0], node.batch_dims[0]))

        node['kernel_spatial'] = kernel_shape[node.kernel_spatial_idx]

        if not node.has_valid('output'):
            # restore the number of output feature maps from the second argument that is weights
            if node.type in [
                    'Convolution', 'Deconvolution', 'DeformableConvolution'
            ]:
                node['output'] = kernel_shape[node.output_feature_channel]
            else:
                raise Error(
                    'Convolution infer function was called for a node {} with unsupported type {}',
                    node.soft_get('name'), node.type)

        # Set default values for dilation, strides and pads if not set
        if not node.has_valid('dilation'):
            node['dilation'] = np.full([len(input_shape)], 1, dtype=np.int64)
        if not node.has_valid('stride'):
            node['stride'] = np.full([len(input_shape)], 1, dtype=np.int64)
        if not node.has_valid('pad'):
            node['pad'] = np.array([[0, 0]] * len(input_shape), dtype=np.int64)
        node['pad_spatial_shape'] = node.pad[node.spatial_dims]

        if not node.has_valid('output_padding'):
            node['output_padding'] = np.full([len(input_shape)],
                                             0,
                                             dtype=np.int64)

        input_spatial_shape = input_shape[node.spatial_dims]
        stride_spatial_shape = node.stride[node.spatial_dims]

        kernel_extent = node.dilation[node.spatial_dims] * (
            node.kernel_spatial - 1) + 1
        # TensorFlow always has auto_pad attribute that can be either valid or same_upper
        # In ONNX auto_pad attribute is deprecated but appears in some models (could be valid, same_upper or same_lower)
        # Caffe do not use auto_pad attribute
        if node.has_valid(
                'auto_pad') and not node.has_valid('output_spatial_shape'):
            node['pad_spatial_shape'], node[
                'output_spatial_shape'] = tf_window_op_pad_infer(
                    input_spatial_shape, kernel_extent, stride_spatial_shape,
                    node.auto_pad, node.type == 'Deconvolution')

            pad = np.zeros((len(input_shape), 2), dtype=np.int64)
            pad[node.spatial_dims] = node.pad_spatial_shape
            node.pad = pad
        else:
            pad_spatial_shape = np.add.reduce(node.pad_spatial_shape, axis=1)
            if node.type == 'Convolution':
                float_spatial = Convolution.calc_convolution(
                    input_spatial_shape, stride_spatial_shape,
                    pad_spatial_shape, kernel_extent)
                node['output_spatial_shape'] = int64_array(float_spatial)
            elif node.type == 'Deconvolution':
                # In case of given output_spatial_shape we calculate pads spatial
                if node.has_valid('output_spatial_shape'):
                    if node.has_valid('get_pad'):
                        node['pad'] = node.get_pad(node, input_shape,
                                                   kernel_shape)
                    else:
                        log.debug(
                            'Can\'t calculate paddings due to missing lambda get_pad in {} node'
                            .format(node.id))
                        return
                else:
                    output_padding = node.output_padding[
                        node.spatial_dims] if node.has_valid(
                            'output_padding') else None
                    if output_padding is not None and any(output_padding):
                        pad_spatial_shape -= output_padding
                        for dim in range(len(pad_spatial_shape)):
                            node.pad_spatial_shape[dim][
                                1] -= pad_spatial_shape[dim]
                        node.pad[node.spatial_dims] = node.pad_spatial_shape
                        node['output_padding'] = None

                    float_spatial = Convolution.calc_deconvolution(
                        node, input_spatial_shape, pad_spatial_shape,
                        kernel_extent)
                    node['output_spatial_shape'] = int64_array(float_spatial)
            elif node.type == 'DeformableConvolution':
                # get the output spatial shape from the second input with offsets
                node['output_spatial_shape'] = int64_array(
                    [node.in_node(1).shape[2:4]])
            else:
                assert 'Unsupported layer type "{}"'.format(node.type)

        # For cases when group attribute wasn't set in extractor we should specify get_group attribute
        # this attribute should store lambda node: ... (check tf convolution extractor)
        if node.has_valid('get_group'):
            node['group'] = node.get_group(node)
        output_shape = np.full_like(input_shape, -1, dtype=np.int64)
        output_shape[node.batch_dims] = input_shape[node.batch_dims]  # pylint: disable=unsupported-assignment-operation
        output_shape[node.spatial_dims] = node.output_spatial_shape  # pylint: disable=unsupported-assignment-operation

        # For cases when output attribute wasn't set in extractor we should specify get_output_feature_dim attribute
        # this attribute should store lambda node: ... (check tf convolution extractor)
        if node.has_valid('get_output_feature_dim'):
            node['output'] = node.get_output_feature_dim(node)
        output_shape[node.channel_dims] = node.output  # pylint: disable=unsupported-assignment-operation
        node['output_shape'] = output_shape

        for n in node.out_nodes():
            node.out_node(n).shape = output_shape

        mark_input_bins(
            node, start_port=1 if node.type != 'DeformableConvolution' else 2)
        assign_dims_to_weights(node.in_node(weights_index),
                               node.kernel_spatial_idx,
                               node.input_feature_channel,
                               node.output_feature_channel, len(kernel_shape))

        PermuteAttrs.create_permute_attrs(
            node,
            attrs=[
                ('pad', 'input:0'),
                ('stride', 'input:0'),
                ('dilation', 'input:0'),
                ('output_shape', 'input:0'),
                ('batch_dims', 'input:0'),
                ('channel_dims', 'input:0'),
                ('spatial_dims', 'input:0'),
                ('kernel_shape', 'input:{}'.format(weights_index)),
                ('kernel_spatial_idx', 'input:{}'.format(weights_index)),
                ('input_feature_channel', 'input:{}'.format(weights_index)),
                ('output_feature_channel', 'input:{}'.format(weights_index)),
            ])

        PermuteAttrs.set_permutation(
            node.in_node(weights_index), node, node.get_weights_permute
            if node.has_valid('get_weights_permute') else None)
コード例 #10
0
ファイル: deconvolution.py プロジェクト: yding10/openvino
    def infer(node: Node):
        """
        Deconvolution has an input argument that explicitly determines output shape, so in contrast
        to the forward Conv2d we shouldn't infer output shape. We just use this output shape as
        an input shape and pass it to our utilities that computes numeric values for padding.
        They also deliver output shape that is interpreted here as input shape for convolution.
        We need to check that the real input shape and shape inferred by those utility functions match.
        """
        output_shape = shape_array(node.in_node(2).value)
        output_shape[0] = node.in_port(0).data.get_shape()[0]
        kernel_shape = node.in_port(1).data.get_shape()
        node['kernel_shape'] = kernel_shape
        if output_shape is None or kernel_shape is None or node.spatial_dims is None or node.stride is None:
            return

        if not node.has_valid('kernel_spatial_idx'):
            node['kernel_spatial_idx'] = np.delete(
                [x for x in range(len(kernel_shape))],
                (node.input_feature_channel, node.output_feature_channel))

        if not node.has_valid('dilation'):
            node['dilation'] = np.full([len(output_shape)], 1, dtype=np.int64)

        spatial_dims = node.spatial_dims
        output_spatial = shape_array(output_shape[spatial_dims])
        stride_spatial = shape_array(node.stride[spatial_dims])
        node['kernel_spatial'] = shape_array(
            kernel_shape[node.kernel_spatial_idx])
        node.pad_spatial_shape, input_spatial_for_check = tf_window_op_pad_infer(
            output_spatial, node.kernel_spatial, stride_spatial, node.auto_pad)

        assert compatible_shapes(input_spatial_for_check,
                                 node.in_node(0).shape[spatial_dims])

        pad = np.zeros((len(output_shape), 2), dtype=np.int64)
        pad[spatial_dims] = node.pad_spatial_shape
        node.pad = pad

        node.output = output_shape[node.channel_dims][0]
        node.output_shape = output_shape
        node.out_port(0).data.set_shape(output_shape)

        mark_input_bins(node, ['weights'], 1)
        assign_dims_to_weights(node.in_node(1), node.kernel_spatial_idx,
                               node.input_feature_channel,
                               node.output_feature_channel, len(kernel_shape))

        # OK, now we are sure this is a supported Deconvolution layer
        node.type = 'Deconvolution'
        node.op = 'Deconv2D'

        # Add permute_attrs
        PermuteAttrs.create_permute_attrs(
            node,
            attrs=[
                ('pad', 'input:0'),
                ('stride', 'input:0'),
                ('output_shape', 'input:0'),
                ('batch_dims', 'input:0'),
                ('channel_dims', 'input:0'),
                ('spatial_dims', 'input:0'),
                ('kernel_shape', 'input:1'),
                ('kernel_spatial_idx', 'input:1'),
                ('input_feature_channel', 'input:1'),
                ('output_feature_channel', 'input:1'),
            ])

        # is needed to permute Deconv weights from the original TF [H, W, C_OUT, C_IN] into IE [C_IN, C_OUT, H, W]
        # but for other nodes in weights subgraph permutations must turned off
        # by marking with MarkSubGraphsWithCorrectLayout even if graph layout is NCHW.
        PermuteAttrs.set_permutation(
            node.in_node(1), node, node.soft_get('get_weights_permute', None))
        PermuteInputs().set_input_permutation(node.in_node(1), node, 'input:1',
                                              'transpose')
        PermuteInputs().set_input_permutation(node.in_node(2), node, 'input:0',
                                              'shape')

        node['force_precision_in_ports'] = {2: 'int64'}