def replace_pattern(graph: Graph, match: dict): tile = match['tile'] if tile.has_valid('tile_array'): tile_array = tile.tile_array assert len(tile_array) == len(tile.in_port(0).data.get_shape()) non_one_tile = np.argwhere(tile_array != 1).flatten() # We need to add new tiles only in case when we tile more than one dimension if len(non_one_tile) > 1: last_tile = None for i in non_one_tile: axis = i tiles = tile_array[i] new_tile = Tile(graph, {'name': tile.name + '/Tile_{}/'.format(i), 'axis': axis, 'tiles': tiles, 'need_shape_inference': True}).create_node() if not last_tile: last_tile = new_tile tile.in_port(0).get_connection().set_destination(new_tile.in_port(0)) else: last_tile.out_port(0).connect(new_tile.in_port(0)) last_tile = new_tile # Reconnect output to new tile node and delete old tile tile.out_port(0).get_connection().set_source(last_tile.out_port(0))
def replace_pattern(self, graph: Graph, match: dict): node = match['tile'] name = node.soft_get('name', node.id) axis = node.axis tiles = node.tiles input_shape = node.in_port(0).data.get_shape() assert input_shape is not None tiles_input_value = int64_array(np.ones(input_shape.size)) tiles_input_value[axis] = tiles const = Const(graph, { 'value': tiles_input_value, 'name': name + '/tiles' }).create_node() tile = Tile(graph, {'name': name}).create_node() node.out_port(0).get_connection().set_source(tile.out_port(0)) node.in_port(0).get_connection().set_destination(tile.in_port(0)) const.out_port(0).connect(tile.in_port(1))
def mxrepeat_decomposition(node: Node): graph = node.graph name = node.soft_get('name', node.id) rename_node(node, name + '/to_be_removed') # Unqueeze input_rank = Rank(graph, {'name': name + '/Rank'}).create_node() node.in_port(0).get_source().connect(input_rank.in_port(0)) axis = get_canonical_axis_index_node(input_rank, node.axis) unsqueeze_axis = create_op_node_with_second_input( graph, Add, int64_array([1]), {'name': name + '/Unsqueeze/Axis'}, input_node=axis) unsqueeze = Unsqueeze(graph, { 'name': name + '/Unsqueeze' }).create_node() unsqueeze.in_port(1).connect(unsqueeze_axis.out_port(0)) # Tile (1, 1, ..., repeats, ..., 1) # we generate tile array according to the following table: # parts: | first | repeats | second | # i: | 0, 1, ..., axis,| axis + 1,| ..., rank+1 | # tile_array: | 1, 1, ..., 1 ,| repeats ,| ..., 1 | one = Const(graph, { 'name': name + '/Broadcast/One', 'value': int64_array([1]) }).create_node() first_ones = Broadcast(graph, { 'name': name + '/Broadcast/Ones_first_part' }).create_node() first_ones.in_port(0).connect(one.out_port(0)) first_ones.in_port(1).connect(unsqueeze_axis.out_port(0)) repeats = Const(graph, { 'name': name + '/repeats', 'value': int64_array([node.repeats]) }).create_node() second_ones = Broadcast(graph, { 'name': name + '/Broadcast/Ones_second_part' }).create_node() second_part_broadcast_shape = Sub( graph, { 'name': name + '/Broadcast/Shape/second_part' }).create_node() second_part_broadcast_shape.in_port(0).connect(input_rank.out_port(0)) second_part_broadcast_shape.in_port(1).connect( unsqueeze_axis.out_port(0)) second_ones.in_port(0).connect(one.out_port(0)) second_ones.in_port(1).connect(second_part_broadcast_shape.out_port(0)) tile_repeats = new_shape_node_from_shape_nodes( [first_ones, repeats, second_ones]) tile = Tile(graph, {'name': name + '/Tile'}).create_node() tile.in_port(1).connect(tile_repeats.out_port(0)) # Reshape (input_shape[:axis], input_shape[axis] * repeats, input_shape[axis+1:]) # we generate reshape dim array according to the following table: # parts: | first | rep | second | # i: | 0, 1, ... ,| axis, | ..., rank | # dim_array: | inp_sh[i] ,| input_shape[axis] * repeats ,| inp_sh[i] | input_shape = Shape(graph, {'name': name + '/Shape'}).create_node() node.in_port(0).get_source().connect(input_shape.in_port(0)) first_input_shape_part = get_shape_values_by_range_idxs( input_shape, input_rank, begin=0, end=node.axis, include_begin=True, include_end=False) original_axis_dim = create_op_with_const_inputs( graph, Gather, {2: int64_array(0)}, {'name': name + '/OriginalDim'}, input_node=input_shape) original_axis_dim.in_port(1).connect(axis.out_port(0)) repeated_dimention = Mul(graph, { 'name': name + '/RepeatedDim' }).create_node() repeated_dimention.in_port(0).connect(original_axis_dim.out_port(0)) repeated_dimention.in_port(1).connect(repeats.out_port(0)) second_input_shape_part = get_shape_values_by_range_idxs( input_shape, input_rank, begin=node.axis, end=-1, include_begin=False, include_end=True) output_shape = new_shape_node_from_shape_nodes([ first_input_shape_part, repeated_dimention, second_input_shape_part ]) reshape = Reshape(graph, {'name': name}).create_node() rename_node(reshape, name) reshape.in_port(1).connect(output_shape.out_port(0)) # Final connections node.in_port(0).get_connection().set_destination(unsqueeze.in_port(0)) tile.in_port(0).connect(unsqueeze.out_port(0)) reshape.in_port(0).connect(tile.out_port(0)) node.out_port(0).get_connection().set_source(reshape.out_port(0))