コード例 #1
0
    def infer(node: Node):
        node_name = node.soft_get('name', node.id)

        input_shape = node.in_port(0).data.get_shape()
        input_value = node.in_port(0).data.get_value()
        target_shape = node.in_port(1).data.get_value()
        assert target_shape is not None, 'Output shape is not defined for node "{}"'.format(
            node_name)
        assert node.has_and_set(
            'mode'), 'Broadcasting mode is not defined for node "{}"'.format(
                node_name)

        if node.mode == 'numpy':
            node.out_port(0).data.set_shape(
                uni_directional_shape_broadcasting(input_shape, target_shape))
        elif node.mode == 'bidirectional':
            node.out_port(0).data.set_shape(
                bi_directional_shape_broadcasting(input_shape, target_shape))
        else:
            raise Error('The node "{}" has unsupported mode "{}"'.format(
                node_name, node.mode))

        PermuteInputs().set_input_permutation(node.in_node(1), node,
                                              'output:0', 'shape')

        if input_value is not None and not node.has_and_set(
                'stop_value_propagation'):
            if node.mode == 'numpy':
                node.out_port(0).data.set_value(
                    uni_directional_broadcasting(input_value, target_shape))
            elif node.mode == 'bidirectional':
                node.out_port(0).data.set_value(
                    bi_directional_broadcasting(input_value, target_shape))
コード例 #2
0
ファイル: broadcasting_test.py プロジェクト: yding10/openvino
 def test_uni_directional_shape_broadcasting(self, input_shape,
                                             target_shape, expected_shape):
     result = uni_directional_shape_broadcasting(input_shape, target_shape)
     if expected_shape is None:
         self.assertIsNone(result)
     else:
         self.assertTrue(strict_compare_tensors(result, expected_shape))
コード例 #3
0
    def infer(node: Node):
        node_name = node.soft_get('name', node.id)

        input_shape = node.in_port(0).data.get_shape()
        input_value = node.in_port(0).data.get_value()
        target_shape = node.in_port(1).data.get_value()
        assert target_shape is not None, 'Output shape is not defined for node "{}"'.format(
            node_name)
        assert node.has_and_set(
            'mode'), 'Broadcasting mode is not defined for node "{}"'.format(
                node_name)

        PermuteInputs().set_input_permutation(node.in_node(1), node,
                                              'output:0', 'shape')

        if input_value is not None and not node.has_and_set(
                'stop_value_propagation'):
            if node.mode == 'numpy':
                node.out_port(0).data.set_value(
                    uni_directional_broadcasting(input_value, target_shape))
            elif node.mode == 'bidirectional':
                node.out_port(0).data.set_value(
                    bi_directional_broadcasting(input_value, target_shape))
            elif node.mode == 'explicit':
                axes_mapping = node.in_port(2).data.get_value()
                assert axes_mapping  is not None, 'Broadcast(mode="explicit") with dynamic axes_mapping input ' \
                                                  'is not supported. Node: `{}`'.format(node_name)
                PermuteInputs().set_input_permutation(node.in_node(2), node,
                                                      'output:0', 'axis')
                axes_mapping = node.in_port(2).data.get_value()
                node.out_port(0).data.set_value(
                    explicit_broadcasting(input_value, target_shape,
                                          axes_mapping))
            else:
                raise Error('The node "{}" has unsupported mode "{}"'.format(
                    node_name, node.mode))
        else:
            if node.mode == 'numpy':
                node.out_port(0).data.set_shape(
                    uni_directional_shape_broadcasting(input_shape,
                                                       target_shape))
            elif node.mode == 'bidirectional':
                node.out_port(0).data.set_shape(
                    bi_directional_shape_broadcasting(input_shape,
                                                      target_shape))
            elif node.mode == 'explicit':
                axes_mapping = node.in_port(2).data.get_value()
                assert axes_mapping is not None, 'Broadcast(mode="explicit") with dynamic axes_mapping input ' \
                                                 'is not supported. Node: `{}`'.format(node_name)
                PermuteInputs().set_input_permutation(node.in_node(2), node,
                                                      'output:0', 'axis')
                axes_mapping = node.in_port(2).data.get_value()
                new_shape, _ = explicit_shape_broadcasting(
                    input_shape, target_shape, axes_mapping)
                node.out_port(0).data.set_shape(new_shape)
            else:
                raise Error('The node "{}" has unsupported mode "{}"'.format(
                    node_name, node.mode))
コード例 #4
0
ファイル: broadcasting_test.py プロジェクト: yding10/openvino
    def test_uni_directional_broadcasting(self, input_shape, target_shape,
                                          expected_shape):
        self.assertTrue(
            np.array_equal(
                uni_directional_shape_broadcasting(input_shape, target_shape),
                expected_shape))

        input_value = np.array(np.random.rand(*input_shape))
        if expected_shape is not None:
            expected_value = np.broadcast_to(input_value,
                                             int64_array(target_shape))
            self.assertTrue(
                np.array_equal(
                    uni_directional_broadcasting(input_value,
                                                 int64_array(target_shape)),
                    expected_value))
        else:
            with self.assertRaisesRegex(
                    Exception, '.*cannot be uni-directionally broadcasted.*'):
                uni_directional_broadcasting(input_value,
                                             int64_array(target_shape))