コード例 #1
0
def save_restored_graph(graph: Graph, path: str, meta_data, name=None):
    """
    Function to apply all necessary transforms from back stage to prepare and save restored graph and metadata.
    :param graph: Graph to save
    :param path: Path to saved IR
    :param meta_data: Namespace with converting parameters restored from IR
    :param name: Name for saved IR
    :return:
    """

    if name is None:
        name = graph.name

    precision = data_type_str_to_precision(graph.graph['cmd_params'].data_type)
    assert precision in ['FP16', 'FP32'], 'Cannot define precision for restored model!'

    # List items order matters, do not change it.
    transformation_list = [
        ConvolutionWithGroupsResolver,
        StridedSliceMasksNormalizer,
        PackBinaryWeights,
        BlobNormalizer,
        ConvolutionNormalizer,
        KaldiRemoveMemoryOutputBackReplacementPattern,
    ]

    # We need to run some specific passes from MO back stage.
    apply_replacements_list(graph, transformation_list)

    # Transformations with enabled=False should be run manually.
    for_graph_and_each_sub_graph_recursively(graph, RemoveConstOps().find_and_replace_pattern)
    for_graph_and_each_sub_graph_recursively(graph, CreateConstNodesReplacement().find_and_replace_pattern)

    prepare_emit_ir(graph, precision, path, name, meta_info=meta_data)
コード例 #2
0
ファイル: restore_graph.py プロジェクト: pavel-esir/openvino
def save_restored_graph(graph: Graph, path: str, meta_data, name=None):
    """
    Function to apply all necessary transforms from back stage to prepare and save restored graph and metadata.
    :param graph: Graph to save
    :param path: Path to saved IR
    :param meta_data: Namespace with converting parameters restored from IR
    :param name: Name for saved IR
    :return:
    """

    if name is None:
        name = graph.name

    if 'data_type' not in meta_data:
        log.debug(
            'Provided `meta_data` does not contain `data_type` parameter. Set `data_type`'
            ' parameter value to `FP32`.')
        # Set data_type to FP32. All restored constants will be saved in provided data type.
        data_type = 'FP32'

        # We need to specify this attribute to pass graph transformations. This information will not be saved into IR.
        # All constants and placeholders will be saved with same types as restored from IR
        graph.graph['cmd_params'].data_type = data_type
    else:
        data_type = data_type_str_to_precision(
            graph.graph['cmd_params'].data_type)

    assert data_type in ['FP16', 'FP32'], '`data_type` value {} is not supported by MO,' \
                                          ' cannot save graph'.format(data_type)

    # List items order matters, do not change it.
    transformation_list = [
        ConvolutionWithGroupsResolver,
        StridedSliceMasksNormalizer,
        PackBinaryWeights,
        BlobNormalizer,
        ConvolutionNormalizer,
        MarkNodesWithShapeValues,
    ]

    # We need to run some specific passes from MO back stage.
    apply_replacements_list(graph, transformation_list)

    # Transformations with enabled=False should be run manually.
    for_graph_and_each_sub_graph_recursively(
        graph,
        RemoveConstOps().find_and_replace_pattern)
    for_graph_and_each_sub_graph_recursively(
        graph,
        CreateConstNodesReplacement().find_and_replace_pattern)

    prepare_emit_ir(graph,
                    data_type,
                    path,
                    name,
                    meta_info=meta_data,
                    used_by_ir_reader=True)