コード例 #1
0
ファイル: setop_table.py プロジェクト: vpathak2019/jx-sqlite
    def _set_op(self, query, frum):
        # GET LIST OF COLUMNS
        frum_path = split_field(frum)
        primary_nested_path = join_field(frum_path[1:])
        vars_ = UNION([s.value.vars() for s in listwrap(query.select)])
        schema = self.sf.tables[primary_nested_path].schema

        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path, sub_table) in enumerate(self.sf.tables.items())
        }

        active_columns = {".": []}
        for cname, cols in schema.items():
            if any(startswith_field(cname, v) for v in vars_):
                for c in cols:
                    if c.type in STRUCT:
                        continue
                    nest = c.nested_path[0]
                    active = active_columns.get(nest)
                    if not active:
                        active = active_columns[nest] = []
                    active.append(c)

        for nested_path, s in self.sf.tables.items():
            for cname, cols in s.schema.items():
                if not any(startswith_field(cname, c.names[c.nested_path[0]]) for n, cc in active_columns.items() for c in cc):
                    for c in cols:
                        if c.type in STRUCT:
                            continue
                        nest = c.nested_path[0]
                        active = active_columns.get(nest)
                        if not active:
                            active = active_columns[nest] = []
                        active.append(c)

        # ANY VARS MENTIONED WITH NO COLUMNS?
        for v in vars_:
            if not any(startswith_field(cname, v) for cname in schema.keys()):
                active_columns["."].append(Column(
                    names={".": v},
                    type="null",
                    es_column=".",
                    es_index=".",
                    nested_path=["."]
                ))

        # EVERY COLUMN, AND THE INDEX IT TAKES UP
        index_to_column = {}  # MAP FROM INDEX TO COLUMN (OR SELECT CLAUSE)
        index_to_uid = {}  # FROM NESTED PATH TO THE INDEX OF UID
        sql_selects = []  # EVERY SELECT CLAUSE (NOT TO BE USED ON ALL TABLES, OF COURSE)
        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path, sub_table) in enumerate(self.sf.tables.items())
            }

        sorts = []
        if query.sort:
            for s in query.sort:
                col = s.value.to_sql(schema)[0]
                for t, sql in col.sql.items():
                    json_type = sql_type_to_json_type[t]
                    if json_type in STRUCT:
                        continue
                    column_number = len(sql_selects)
                    # SQL HAS ABS TABLE REFERENCE
                    column_alias = _make_column_name(column_number)
                    sql_selects.append(sql + " AS " + column_alias)
                    if s.sort == -1:
                        sorts.append(column_alias + " IS NOT NULL")
                        sorts.append(column_alias + " DESC")
                    else:
                        sorts.append(column_alias + " IS NULL")
                        sorts.append(column_alias)

        selects = []
        primary_doc_details = Data()
        # EVERY SELECT STATEMENT THAT WILL BE REQUIRED, NO MATTER THE DEPTH
        # WE WILL CREATE THEM ACCORDING TO THE DEPTH REQUIRED
        for nested_path, sub_table in self.sf.tables.items():
            nested_doc_details = {
                "sub_table": sub_table,
                "children": [],
                "index_to_column": {},
                "nested_path": [nested_path]  # fake the real nested path, we only look at [0] anyway
            }

            # INSERT INTO TREE
            if not primary_doc_details:
                primary_doc_details = nested_doc_details
            else:
                def place(parent_doc_details):
                    if startswith_field(nested_path, parent_doc_details['nested_path'][0]):
                        for c in parent_doc_details['children']:
                            if place(c):
                                return True
                        parent_doc_details['children'].append(nested_doc_details)

                place(primary_doc_details)

            alias = nested_doc_details['alias'] = nest_to_alias[nested_path]

            if nested_path=="." and quoted_GUID in vars_:
                column_number = index_to_uid[nested_path] = nested_doc_details['id_coord'] = len(sql_selects)
                sql_select = alias + "." + quoted_GUID
                sql_selects.append(sql_select + " AS " + _make_column_name(column_number))
                index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                    push_name="_id",
                    push_column_name="_id",
                    push_column=0,
                    push_child=".",
                    sql=sql_select,
                    pull=get_column(column_number),
                    type="string",
                    column_alias=_make_column_name(column_number),
                    nested_path=[nested_path]           # fake the real nested path, we only look at [0] anyway
                )
                query.select = [s for s in listwrap(query.select) if s.name!="_id"]


            # WE ALWAYS ADD THE UID AND ORDER
            column_number = index_to_uid[nested_path] = nested_doc_details['id_coord'] = len(sql_selects)
            sql_select = alias + "." + quoted_UID
            sql_selects.append(sql_select + " AS " + _make_column_name(column_number))
            if nested_path !=".":
                index_to_column[column_number]=ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=[nested_path],            # fake the real nested path, we only look at [0] anyway
                    column_alias=_make_column_name(column_number)

                )
                column_number = len(sql_selects)
                sql_select = alias + "." + quote_table(ORDER)
                sql_selects.append(sql_select + " AS " + _make_column_name(column_number))
                index_to_column[column_number]=ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=[nested_path],            # fake the real nested path, we only look at [0] anyway
                    column_alias=_make_column_name(column_number)

                )

            # WE DO NOT NEED DATA FROM TABLES WE REQUEST NOTHING FROM
            if nested_path not in active_columns:
                continue

            if len(active_columns[nested_path]) != 0:
                # ADD SQL SELECT COLUMNS FOR EACH jx SELECT CLAUSE
                si = 0
                for s in listwrap(query.select):
                    try:
                        column_number = len(sql_selects)
                        s.pull = get_column(column_number)
                        db_columns = s.value.to_sql(schema)

                        if isinstance(s.value, LeavesOp):
                            for column in db_columns:
                                if isinstance(column.nested_path, list):
                                    column.nested_path=column.nested_path[0]
                                if column.nested_path and column.nested_path!=nested_path:
                                    continue
                                for t, unsorted_sql in column.sql.items():
                                    json_type = sql_type_to_json_type[t]
                                    if json_type in STRUCT:
                                        continue
                                    column_number = len(sql_selects)
                                    # SQL HAS ABS TABLE REFERENCE
                                    column_alias = _make_column_name(column_number)
                                    if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1:
                                        continue
                                    selects.append(concat_field(alias, unsorted_sql))
                                    sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias)
                                    index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                                        push_name=literal_field(get_property_name(concat_field(s.name, column.name))),
                                        push_column_name=get_property_name(concat_field(s.name, column.name)),
                                        push_column=si,
                                        push_child=".",
                                        pull=get_column(column_number),
                                        sql=unsorted_sql,
                                        type=json_type,
                                        column_alias=column_alias,
                                        nested_path=[nested_path]           # fake the real nested path, we only look at [0] anyway
                                    )
                                    si += 1
                        else:
                            for column in db_columns:
                                if isinstance(column.nested_path, list):
                                    column.nested_path=column.nested_path[0]
                                if column.nested_path and column.nested_path!=nested_path:
                                    continue
                                for t, unsorted_sql in column.sql.items():
                                    json_type = sql_type_to_json_type[t]
                                    if json_type in STRUCT:
                                        continue
                                    column_number = len(sql_selects)
                                    # SQL HAS ABS TABLE REFERENCE
                                    column_alias = _make_column_name(column_number)
                                    if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1:
                                        continue
                                    selects.append(concat_field(alias, unsorted_sql))
                                    sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias)
                                    index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                                        push_name=s.name,
                                        push_column_name=s.name,
                                        push_column=si,
                                        push_child=column.name,
                                        pull=get_column(column_number),
                                        sql=unsorted_sql,
                                        type=json_type,
                                        column_alias=column_alias,
                                        nested_path=[nested_path]
                                        # fake the real nested path, we only look at [0] anyway
                                    )
                    finally:
                        si += 1
            elif startswith_field(nested_path, primary_nested_path):
                # ADD REQUIRED COLUMNS, FOR DEEP STUFF
                for ci, c in enumerate(active_columns[nested_path]):
                    if c.type in STRUCT:
                        continue

                    column_number = len(sql_selects)
                    nested_path = c.nested_path
                    unsorted_sql = nest_to_alias[nested_path[0]] + "." + quote_table(c.es_column)
                    column_alias = _make_column_name(column_number)
                    if concat_field(alias, unsorted_sql) in selects and len(unsorted_sql.split())==1:
                        continue
                    selects.append(concat_field(alias, unsorted_sql))
                    sql_selects.append(alias + "." + unsorted_sql + " AS " + column_alias)
                    index_to_column[column_number] = nested_doc_details['index_to_column'][column_number] = ColumnMapping(
                        push_name=s.name,
                        push_column_name=s.name,
                        push_column=si,
                        push_child=relative_field(c.names["."], s.name),
                        pull=get_column(column_number),
                        sql=unsorted_sql,
                        type=c.type,
                        column_alias=column_alias,
                        nested_path=nested_path
                    )

        where_clause = query.where.to_sql(schema, boolean=True)[0].sql.b
        unsorted_sql = self._make_sql_for_one_nest_in_set_op(
            ".",
            sql_selects,
            where_clause,
            active_columns,
            index_to_column
        )

        for n, _ in self.sf.tables.items():
            sorts.append(COLUMN + text_type(index_to_uid[n]))

        ordered_sql = (
            "SELECT * FROM (\n" +
            unsorted_sql +
            "\n)" +
            "\nORDER BY\n" + ",\n".join(sorts) +
            "\nLIMIT " + quote_value(query.limit)
        )
        self.db.create_new_functions()  #creating new functions: regexp
        result = self.db.query(ordered_sql)

        def _accumulate_nested(rows, row, nested_doc_details, parent_doc_id, parent_id_coord):
            """
            :param rows: REVERSED STACK OF ROWS (WITH push() AND pop())
            :param row: CURRENT ROW BEING EXTRACTED
            :param nested_doc_details: {
                    "nested_path": wrap_nested_path(nested_path),
                    "index_to_column": map from column number to column details
                    "children": all possible direct decedents' nested_doc_details
                 }
            :param parent_doc_id: the id of the parent doc (for detecting when to step out of loop)
            :param parent_id_coord: the column number for the parent id (so we ca extract from each row)
            :return: the nested property (usually an array)
            """
            previous_doc_id = None
            doc = Null
            output = []
            id_coord = nested_doc_details['id_coord']

            while True:
                doc_id = row[id_coord]

                if doc_id == None or (parent_id_coord is not None and row[parent_id_coord] != parent_doc_id):
                    rows.append(row)  # UNDO PREVIOUS POP (RECORD IS NOT A NESTED RECORD OF parent_doc)
                    return output

                if doc_id != previous_doc_id:
                    previous_doc_id = doc_id
                    doc = Null
                    curr_nested_path = nested_doc_details['nested_path'][0]
                    index_to_column = nested_doc_details['index_to_column'].items()
                    if index_to_column:
                        for i, c in index_to_column:
                            value = row[i]
                            if value == None:
                                continue
                            if value == '':
                                continue

                            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_path=join_field([c.push_name]+split_field(c.push_child))
                            else:           # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_path=c.push_child

                            if relative_path == ".":
                                doc = value
                            elif doc is Null:
                                doc = Data()
                                doc[relative_path] = value
                            else:
                                doc[relative_path] = value

                for child_details in nested_doc_details['children']:
                    # EACH NESTED TABLE MUST BE ASSEMBLED INTO A LIST OF OBJECTS
                    child_id = row[child_details['id_coord']]
                    if child_id is not None:
                        nested_value = _accumulate_nested(rows, row, child_details, doc_id, id_coord)
                        if nested_value:
                            push_name = child_details['nested_path'][0]
                            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_path=relative_field(push_name, curr_nested_path)
                            else:           # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_path="."

                            if relative_path == "." and doc is Null:
                                doc = nested_value
                            elif relative_path == ".":
                                doc[push_name] = unwraplist([v[push_name] for v in nested_value])
                            elif doc is Null:
                                doc = Data()
                                doc[relative_path] = unwraplist(nested_value)
                            else:
                                doc[relative_path] = unwraplist(nested_value)

                output.append(doc)

                try:
                    row = rows.pop()
                except IndexError:
                    return output

        cols = tuple([i for i in index_to_column.values() if i.push_name != None])
        rows = list(reversed(unwrap(result.data)))
        if rows:
            row = rows.pop()
            data = _accumulate_nested(rows, row, primary_doc_details, None, None)
        else:
            data = result.data

        if query.format == "cube":
            for f, _ in self.sf.tables.items():
                if frum.endswith(f) or (test_dots(cols) and isinstance(query.select, list)):
                    num_rows = len(result.data)
                    num_cols = MAX([c.push_column for c in cols]) + 1 if len(cols) else 0
                    map_index_to_name = {c.push_column: c.push_column_name for c in cols}
                    temp_data = [[None]*num_rows for _ in range(num_cols)]
                    for rownum, d in enumerate(result.data):
                        for c in cols:
                            if c.push_child == ".":
                                temp_data[c.push_column][rownum] = c.pull(d)
                            else:
                                column = temp_data[c.push_column][rownum]
                                if column is None:
                                    column = temp_data[c.push_column][rownum] = Data()
                                column[c.push_child] = c.pull(d)
                    output = Data(
                        meta={"format": "cube"},
                        data={n: temp_data[c] for c, n in map_index_to_name.items()},
                        edges=[{
                            "name": "rownum",
                            "domain": {
                                "type": "rownum",
                                "min": 0,
                                "max": num_rows,
                                "interval": 1
                            }
                        }]
                    )
                    return output

            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                num_rows = len(data)
                map_index_to_name = {c.push_column: c.push_column_name for c in cols}
                temp_data = Data()
                for rownum, d in enumerate(data):
                    for k, v in d.items():
                        if temp_data[k] == None:
                            temp_data[k] = [None] * num_rows
                        temp_data[k][rownum] = v
                return Data(
                    meta={"format": "cube"},
                    data={n: temp_data[literal_field(n)] for c, n in map_index_to_name.items()},
                    edges=[{
                        "name": "rownum",
                        "domain": {
                            "type": "rownum",
                            "min": 0,
                            "max": num_rows,
                            "interval": 1
                        }
                    }]
                )
            else:
                num_rows = len(data)
                map_index_to_name = {c.push_column: c.push_column_name for c in cols}
                temp_data = [data]

                return Data(
                    meta={"format": "cube"},
                    data={n: temp_data[c] for c, n in map_index_to_name.items()},
                    edges=[{
                        "name": "rownum",
                        "domain": {
                            "type": "rownum",
                            "min": 0,
                            "max": num_rows,
                            "interval": 1
                        }
                    }]
                )

        elif query.format == "table":
            for f, _ in self.sf.tables.items():
                if  frum.endswith(f):
                    num_column = MAX([c.push_column for c in cols])+1
                    header = [None]*num_column
                    for c in cols:
                        header[c.push_column] = c.push_column_name

                    output_data = []
                    for d in result.data:
                        row = [None] * num_column
                        for c in cols:
                            set_column(row, c.push_column, c.push_child, c.pull(d))
                        output_data.append(row)

                    return Data(
                        meta={"format": "table"},
                        header=header,
                        data=output_data
                    )
            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                num_rows = len(data)
                column_names= [None]*(max(c.push_column for c in cols) + 1)
                for c in cols:
                    column_names[c.push_column] = c.push_column_name

                temp_data = []
                for rownum, d in enumerate(data):
                    row =[None] * len(column_names)
                    for i, (k, v) in enumerate(sorted(d.items())):
                        for c in cols:
                            if k==c.push_name:
                                row[c.push_column] = v
                    temp_data.append(row)

                return Data(
                    meta={"format": "table"},
                    header=column_names,
                    data=temp_data
                )
            else:
                column_names = listwrap(query.select).name
                return Data(
                    meta={"format": "table"},
                    header=column_names,
                    data=[[d] for d in data]
                )

        else:
            for f, _ in self.sf.tables.items():
                if frum.endswith(f) or (test_dots(cols) and isinstance(query.select, list)):
                    data = []
                    for d in result.data:
                        row = Data()
                        for c in cols:
                            if c.push_child == ".":
                                row[c.push_name] = c.pull(d)
                            elif c.num_push_columns:
                                tuple_value = row[c.push_name]
                                if not tuple_value:
                                    tuple_value = row[c.push_name] = [None] * c.num_push_columns
                                tuple_value[c.push_child] = c.pull(d)
                            elif not isinstance(query.select, list):   # select is value type
                                row[c.push_child]=c.pull(d)
                            else:
                                row[c.push_name][c.push_child] = c.pull(d)

                        data.append(row)

                    return Data(
                        meta={"format": "list"},
                        data=data
                    )

            if isinstance(query.select, list) or isinstance(query.select.value, LeavesOp):
                temp_data=[]
                for rownum, d in enumerate(data):
                    row = {}
                    for k, v in d.items():
                        for c in cols:
                            if c.push_name==c.push_column_name==k:
                                    row[c.push_column_name] = v
                            elif c.push_name==k and c.push_column_name!=k:
                                    row[c.push_column_name] = v
                    temp_data.append(row)
                return Data(
                    meta={"format": "list"},
                    data=temp_data
                )
            else:
                return Data(
                    meta={"format": "list"},
                    data=data
                )
コード例 #2
0
    def query(self, query):
        """
        :param query:  JSON Query Expression, SET `format="container"` TO MAKE NEW TABLE OF RESULT
        :return:
        """
        if not startswith_field(query['from'], self.sf.fact):
            Log.error("Expecting table, or some nested table")
        frum, query['from'] = query['from'], self
        table = self.sf.tables[relative_field(frum, self.sf.fact)]
        schema = table.schema
        query = QueryOp.wrap(query, table=table, schema=schema)
        new_table = "temp_" + unique_name()

        if query.format == "container":
            create_table = "CREATE TABLE " + quote_column(new_table) + " AS "
        else:
            create_table = ""

        if query.groupby and query.format != "cube":
            op, index_to_columns = self._groupby_op(query, frum)
            command = create_table + op
        elif query.groupby:
            query.edges, query.groupby = query.groupby, query.edges
            op, index_to_columns = self._edges_op(query, frum)
            command = create_table + op
            query.edges, query.groupby = query.groupby, query.edges
        elif query.edges or any(a != "none" for a in listwrap(query.select).aggregate):
            op, index_to_columns = self._edges_op(query, frum)
            command = create_table + op
        else:
            op = self._set_op(query, frum)
            return op

        result = self.db.query(command)

        if query.format == "container":
            output = QueryTable(new_table, db=self.db, uid=self.uid, exists=True)
        elif query.format == "cube" or (not query.format and query.edges):
            column_names = [None] * (max(c.push_column for c in index_to_columns.values()) + 1)
            for c in index_to_columns.values():
                column_names[c.push_column] = c.push_column_name

            if len(query.edges) == 0 and len(query.groupby) == 0:
                data = {n: Data() for n in column_names}
                for s in index_to_columns.values():
                    data[s.push_name][s.push_child] = unwrap(s.pull(result.data[0]))
                if isinstance(query.select, list):
                    select = [{"name": s.name} for s in query.select]
                else:
                    select = {"name": query.select.name}

                return Data(
                    data=unwrap(data),
                    select=select,
                    meta={"format": "cube"}
                )

            if not result.data:
                edges = []
                dims = []
                for i, e in enumerate(query.edges + query.groupby):
                    allowNulls = coalesce(e.allowNulls, True)

                    if e.domain.type == "set" and e.domain.partitions:
                        domain = SimpleSetDomain(partitions=e.domain.partitions.name)
                    elif e.domain.type == "range":
                        domain = e.domain
                    elif isinstance(e.value, TupleOp):
                        pulls = jx.sort([c for c in index_to_columns.values() if c.push_name == e.name],
                                        "push_child").pull
                        parts = [tuple(p(d) for p in pulls) for d in result.data]
                        domain = SimpleSetDomain(partitions=jx.sort(set(parts)))
                    else:
                        domain = SimpleSetDomain(partitions=[])

                    dims.append(1 if allowNulls else 0)
                    edges.append(Data(
                        name=e.name,
                        allowNulls=allowNulls,
                        domain=domain
                    ))

                data = {}
                for si, s in enumerate(listwrap(query.select)):
                    if s.aggregate == "count":
                        data[s.name] = Matrix(dims=dims, zeros=0)
                    else:
                        data[s.name] = Matrix(dims=dims)

                if isinstance(query.select, list):
                    select = [{"name": s.name} for s in query.select]
                else:
                    select = {"name": query.select.name}

                return Data(
                    meta={"format": "cube"},
                    edges=edges,
                    select=select,
                    data={k: v.cube for k, v in data.items()}
                )

            columns = None

            edges = []
            dims = []
            for g in query.groupby:
                g.is_groupby = True

            for i, e in enumerate(query.edges + query.groupby):
                allowNulls = coalesce(e.allowNulls, True)

                if e.domain.type == "set" and e.domain.partitions:
                    domain = SimpleSetDomain(partitions=e.domain.partitions.name)
                elif e.domain.type == "range":
                    domain = e.domain
                elif e.domain.type == "time":
                    domain = wrap(mo_json.scrub(e.domain))
                elif e.domain.type == "duration":
                    domain = wrap(mo_json.scrub(e.domain))
                elif isinstance(e.value, TupleOp):
                    pulls = jx.sort([c for c in index_to_columns.values() if c.push_name == e.name], "push_child").pull
                    parts = [tuple(p(d) for p in pulls) for d in result.data]
                    domain = SimpleSetDomain(partitions=jx.sort(set(parts)))
                else:
                    if not columns:
                        columns = zip(*result.data)
                    parts = set(columns[i])
                    if e.is_groupby and None in parts:
                        allowNulls = True
                    parts -= {None}

                    if query.sort[i].sort == -1:
                        domain = SimpleSetDomain(partitions=wrap(sorted(parts, reverse=True)))
                    else:
                        domain = SimpleSetDomain(partitions=jx.sort(parts))

                dims.append(len(domain.partitions) + (1 if allowNulls else 0))
                edges.append(Data(
                    name=e.name,
                    allowNulls=allowNulls,
                    domain=domain
                ))

            data_cubes = {}
            for si, s in enumerate(listwrap(query.select)):
                if s.aggregate == "count":
                    data_cubes[s.name] = Matrix(dims=dims, zeros=0)
                else:
                    data_cubes[s.name] = Matrix(dims=dims)

            r2c = index_to_coordinate(dims)  # WORKS BECAUSE THE DATABASE SORTED THE EDGES TO CONFORM
            for rownum, row in enumerate(result.data):
                coord = r2c(rownum)

                for i, s in enumerate(index_to_columns.values()):
                    if s.is_edge:
                        continue
                    if s.push_child == ".":
                        data_cubes[s.push_name][coord] = s.pull(row)
                    else:
                        data_cubes[s.push_name][coord][s.push_child] = s.pull(row)

            if query.select == None:
                select = Null
            elif isinstance(query.select, list):
                select = [{"name": s.name} for s in query.select]
            else:
                select = {"name": query.select.name}

            return Data(
                meta={"format": "cube"},
                edges=edges,
                select=select,
                data={k: v.cube for k, v in data_cubes.items()}
            )
        elif query.format == "table" or (not query.format and query.groupby):
            column_names = [None] * (max(c.push_column for c in index_to_columns.values()) + 1)
            for c in index_to_columns.values():
                column_names[c.push_column] = c.push_column_name
            data = []
            for d in result.data:
                row = [None for _ in column_names]
                for s in index_to_columns.values():
                    if s.push_child == ".":
                        row[s.push_column] = s.pull(d)
                    elif s.num_push_columns:
                        tuple_value = row[s.push_column]
                        if tuple_value == None:
                            tuple_value = row[s.push_column] = [None] * s.num_push_columns
                        tuple_value[s.push_child] = s.pull(d)
                    elif row[s.push_column] == None:
                        row[s.push_column] = Data()
                        row[s.push_column][s.push_child] = s.pull(d)
                    else:
                        row[s.push_column][s.push_child] = s.pull(d)
                data.append(tuple(unwrap(r) for r in row))

            output = Data(
                meta={"format": "table"},
                header=column_names,
                data=data
            )
        elif query.format == "list" or (not query.edges and not query.groupby):
            if not query.edges and not query.groupby and any(listwrap(query.select).aggregate):
                if isinstance(query.select, list):
                    data = Data()
                    for c in index_to_columns.values():
                        if c.push_child == ".":
                            if data[c.push_name] == None:
                                data[c.push_name] = c.pull(result.data[0])
                            elif isinstance(data[c.push_name], list):
                                data[c.push_name].append(c.pull(result.data[0]))
                            else:
                                data[c.push_name] = [data[c.push_name], c.pull(result.data[0])]
                        else:
                            data[c.push_name][c.push_child] = c.pull(result.data[0])

                    output = Data(
                        meta={"format": "value"},
                        data=data
                    )
                else:
                    data = Data()
                    for s in index_to_columns.values():
                        if not data[s.push_child]:
                            data[s.push_child] = s.pull(result.data[0])
                        else:
                            data[s.push_child] += [s.pull(result.data[0])]
                    output = Data(
                        meta={"format": "value"},
                        data=unwrap(data)
                    )
            else:
                data = []
                for rownum in result.data:
                    row = Data()
                    for c in index_to_columns.values():
                        if c.push_child == ".":
                            row[c.push_name] = c.pull(rownum)
                        elif c.num_push_columns:
                            tuple_value = row[c.push_name]
                            if not tuple_value:
                                tuple_value = row[c.push_name] = [None] * c.num_push_columns
                            tuple_value[c.push_child] = c.pull(rownum)
                        else:
                            row[c.push_name][c.push_child] = c.pull(rownum)

                    data.append(row)

                output = Data(
                    meta={"format": "list"},
                    data=data
                )
        else:
            Log.error("unknown format {{format}}", format=query.format)

        return output
コード例 #3
0
ファイル: query_table.py プロジェクト: pombredanne/jx-sqlite
    def query(self, query):
        """
        :param query:  JSON Query Expression, SET `format="container"` TO MAKE NEW TABLE OF RESULT
        :return:
        """
        if not startswith_field(query['from'], self.name):
            Log.error("Expecting table, or some nested table")
        frum, query['from'] = query['from'], self
        query = QueryOp.wrap(query, self.columns)

        # TYPE CONFLICTS MUST NOW BE RESOLVED DURING
        # TYPE-SPECIFIC QUERY NORMALIZATION
        # vars_ = query.vars(exclude_select=True)
        # type_map = {
        #     v: c.es_column
        #     for v in vars_
        #     if v in self.columns and len([c for c in self.columns[v] if c.type != "nested"]) == 1
        #     for c in self.columns[v]
        #     if c.type != "nested"
        # }
        #
        # sql_query = query.map(type_map)
        query = query

        new_table = "temp_" + unique_name()

        if query.format == "container":
            create_table = "CREATE TABLE " + quote_table(new_table) + " AS "
        else:
            create_table = ""

        if query.groupby:
            op, index_to_columns = self._groupby_op(query, frum)
            command = create_table + op
        elif query.edges or any(a != "none"
                                for a in listwrap(query.select).aggregate):
            op, index_to_columns = self._edges_op(query, frum)
            command = create_table + op
        else:
            op = self._set_op(query, frum)
            return op

        if query.sort:
            command += "\nORDER BY " + ",\n".join(
                "(" + sql[t] + ") IS NULL" +
                (" DESC" if s.sort == -1 else "") + ",\n" + sql[t] +
                (" DESC" if s.sort == -1 else "")
                for s, sql in [(s, s.value.to_sql(self)[0].sql)
                               for s in query.sort] for t in "bns" if sql[t])

        result = self.db.query(command)

        column_names = query.edges.name + query.groupby.name + listwrap(
            query.select).name
        if query.format == "container":
            output = QueryTable(new_table,
                                db=self.db,
                                uid=self.uid,
                                exists=True)
        elif query.format == "cube" or (not query.format and query.edges):
            if len(query.edges) == 0 and len(query.groupby) == 0:
                data = {n: Data() for n in column_names}
                for s in index_to_columns.values():
                    data[s.push_name][s.push_child] = unwrap(
                        s.pull(result.data[0]))
                return Data(data=unwrap(data), meta={"format": "cube"})

            if not result.data:
                edges = []
                dims = []
                for i, e in enumerate(query.edges + query.groupby):
                    allowNulls = coalesce(e.allowNulls, True)

                    if e.domain.type == "set" and e.domain.partitions:
                        domain = SimpleSetDomain(
                            partitions=e.domain.partitions.name)
                    elif e.domain.type == "range":
                        domain = e.domain
                    elif isinstance(e.value, TupleOp):
                        pulls = jx.sort([
                            c for c in index_to_columns.values()
                            if c.push_name == e.name
                        ], "push_child").pull
                        parts = [
                            tuple(p(d) for p in pulls) for d in result.data
                        ]
                        domain = SimpleSetDomain(
                            partitions=jx.sort(set(parts)))
                    else:
                        domain = SimpleSetDomain(partitions=[])

                    dims.append(1 if allowNulls else 0)
                    edges.append(
                        Data(name=e.name, allowNulls=allowNulls,
                             domain=domain))

                zeros = [
                    0 if s.aggregate == "count"
                    and index_to_columns[si].push_child == "." else Data
                    for si, s in enumerate(listwrap(query.select))
                ]
                data = {
                    s.name: Matrix(dims=dims, zeros=zeros[si])
                    for si, s in enumerate(listwrap(query.select))
                }

                if isinstance(query.select, list):
                    select = [{"name": s.name} for s in query.select]
                else:
                    select = {"name": query.select.name}

                return Data(meta={"format": "cube"},
                            edges=edges,
                            select=select,
                            data={k: v.cube
                                  for k, v in data.items()})

            columns = None

            edges = []
            dims = []
            for g in query.groupby:
                g.is_groupby = True

            for i, e in enumerate(query.edges + query.groupby):
                allowNulls = coalesce(e.allowNulls, True)

                if e.domain.type == "set" and e.domain.partitions:
                    domain = SimpleSetDomain(
                        partitions=e.domain.partitions.name)
                elif e.domain.type == "range":
                    domain = e.domain
                elif e.domain.type == "time":
                    domain = wrap(mo_json.scrub(e.domain))
                elif e.domain.type == "duration":
                    domain = wrap(mo_json.scrub(e.domain))
                elif isinstance(e.value, TupleOp):
                    pulls = jx.sort([
                        c for c in index_to_columns.values()
                        if c.push_name == e.name
                    ], "push_child").pull
                    parts = [tuple(p(d) for p in pulls) for d in result.data]
                    domain = SimpleSetDomain(partitions=jx.sort(set(parts)))
                else:
                    if not columns:
                        columns = zip(*result.data)
                    parts = set(columns[i])
                    if e.is_groupby and None in parts:
                        allowNulls = True
                    parts -= {None}
                    domain = SimpleSetDomain(partitions=jx.sort(parts))

                dims.append(len(domain.partitions) + (1 if allowNulls else 0))
                edges.append(
                    Data(name=e.name, allowNulls=allowNulls, domain=domain))

            zeros = [
                0 if s.aggregate == "count"
                and index_to_columns[si].push_child == "." else Data
                for si, s in enumerate(listwrap(query.select))
            ]
            data_cubes = {
                s.name: Matrix(dims=dims, zeros=zeros[si])
                for si, s in enumerate(listwrap(query.select))
            }
            r2c = index_to_coordinate(
                dims)  # WORKS BECAUSE THE DATABASE SORTED THE EDGES TO CONFORM
            for rownum, row in enumerate(result.data):
                coord = r2c(rownum)

                for i, s in enumerate(index_to_columns.values()):
                    if s.is_edge:
                        continue
                    if s.push_child == ".":
                        data_cubes[s.push_name][coord] = s.pull(row)
                    else:
                        data_cubes[s.push_name][coord][s.push_child] = s.pull(
                            row)

            if isinstance(query.select, list):
                select = [{"name": s.name} for s in query.select]
            else:
                select = {"name": query.select.name}

            return Data(meta={"format": "cube"},
                        edges=edges,
                        select=select,
                        data={k: v.cube
                              for k, v in data_cubes.items()})
        elif query.format == "table" or (not query.format and query.groupby):
            data = []
            for d in result.data:
                row = [None for _ in column_names]
                for s in index_to_columns.values():
                    if s.push_child == ".":
                        row[s.push_column] = s.pull(d)
                    elif s.num_push_columns:
                        tuple_value = row[s.push_column]
                        if tuple_value == None:
                            tuple_value = row[
                                s.push_column] = [None] * s.num_push_columns
                        tuple_value[s.push_child] = s.pull(d)
                    elif row[s.push_column] == None:
                        row[s.push_column] = Data()
                        row[s.push_column][s.push_child] = s.pull(d)
                    else:
                        row[s.push_column][s.push_child] = s.pull(d)
                data.append(tuple(unwrap(r) for r in row))

            output = Data(meta={"format": "table"},
                          header=column_names,
                          data=data)
        elif query.format == "list" or (not query.edges and not query.groupby):

            if not query.edges and not query.groupby and any(
                    listwrap(query.select).aggregate):
                if isinstance(query.select, list):
                    data = Data()
                    for c in index_to_columns.values():
                        if c.push_child == ".":
                            data[c.push_name] = c.pull(result.data[0])
                        else:
                            data[c.push_name][c.push_child] = c.pull(
                                result.data[0])

                    output = Data(meta={"format": "value"}, data=data)
                else:
                    data = Data()
                    for s in index_to_columns.values():
                        data[s.push_child] = s.pull(result.data[0])

                    output = Data(meta={"format": "value"}, data=unwrap(data))
            else:
                data = []
                for rownum in result.data:
                    row = Data()
                    for c in index_to_columns.values():
                        if c.push_child == ".":
                            row[c.push_name] = c.pull(rownum)
                        elif c.num_push_columns:
                            tuple_value = row[c.push_name]
                            if not tuple_value:
                                tuple_value = row[
                                    c.push_name] = [None] * c.num_push_columns
                            tuple_value[c.push_child] = c.pull(rownum)
                        else:
                            row[c.push_name][c.push_child] = c.pull(rownum)

                    data.append(row)

                output = Data(meta={"format": "list"}, data=data)
        else:
            Log.error("unknown format {{format}}", format=query.format)

        return output