コード例 #1
0
    def __new__(cls, value=None, **kwargs):
        output = object.__new__(cls)
        if value == None:
            if kwargs:
                output.milli = datetime.timedelta(
                    **kwargs).total_seconds() * 1000
                output.month = 0
                return output
            else:
                return None

        if is_number(value):
            output._milli = float(value) * 1000
            output.month = 0
            return output
        elif is_text(value):
            return parse(value)
        elif isinstance(value, Duration):
            output.milli = value.milli
            output.month = value.month
            return output
        elif isinstance(value, float) and is_nan(value):
            return None
        else:
            from mo_logs import Log
            Log.error("Do not know type of object (" +
                      get_module("mo_json").value2json(value) +
                      ")of to make a Duration")
コード例 #2
0
ファイル: durations.py プロジェクト: klahnakoski/pyLibrary
    def __new__(cls, value=None, **kwargs):
        output = object.__new__(cls)
        if value == None:
            if kwargs:
                output.milli = datetime.timedelta(**kwargs).total_seconds() * 1000
                output.month = 0
                return output
            else:
                return None

        if is_number(value):
            output._milli = float(value) * 1000
            output.month = 0
            return output
        elif is_text(value):
            return parse(value)
        elif isinstance(value, Duration):
            output.milli = value.milli
            output.month = value.month
            return output
        elif isinstance(value, float) and is_nan(value):
            return None
        else:
            from mo_logs import Log
            Log.error("Do not know type of object (" + get_module("mo_json").value2json(value) + ")of to make a Duration")
コード例 #3
0
ファイル: pull_data.py プロジェクト: klahnakoski/mo-statcan
def average_weekly(y, year):
    # RETURN AVERAGE OVER YEAR ENDING JULY 1
    min = Date(year).floor(YEAR) - 6 * MONTH
    max = min + YEAR
    max_seen = min
    acc = 0
    for value, (start, stop) in zip(deaths[y], _death_dates):
        if is_nan(value):
            continue
        if min < stop < max:
            max_seen = stop
            if min < start < max:
                acc += value
            else:
                ratio = (stop - min) / WEEK
                acc += value * ratio
        elif min < start < max:
            max_seen = max
            ratio = (max - start) / WEEK
            acc += value * ratio
        if is_nan(acc):
            Log.error("not expected")
    return acc * WEEK / (max_seen - min)