def test_fc(): X = np.zeros((4, 2, 1, 1)) X[0, :, 0, 0] = [0., 0.] X[1, :, 0, 0] = [0., 1.] X[2, :, 0, 0] = [1., 0.] X[3, :, 0, 0] = [1., 1.] Y = np.array([8., 10., 12., 14.]).reshape((-1, 1)) data, label = L.Data([X, Y], "Data")() fc1 = L.FC(data, "fc1", dim_out=1) loss = L.MSE(fc1, "MSE", label=label) fc1.reshape() fc1.W = np.array([1.0, 3.0]).reshape(fc1.W.shape) fc1.b = np.array([0.0]).reshape(fc1.b.shape) net = mobula.Net() net.set_loss(loss) net.lr = 0.5 for i in range(30): net.forward() net.backward() print("Iter: %d, Cost: %f" % (i, loss.Y)) # forward one more time, because of the change of weights last backward net.forward() target = np.dot(X.reshape((4, 2)), fc1.W.T) + fc1.b print(target, fc1.Y) assert np.allclose(fc1.Y, target)
def test_fc2(): X = np.random.random((4, 2, 1, 1)) Y1 = np.random.random((4, 10)) Y2 = np.random.random((4, 10)) [x, y1, y2] = L.Data([X, Y1, Y2]) fc1 = L.FC(x, dim_out=10) fc2 = L.FC(x, dim_out=10) loss1 = L.MSE(fc1, label=Y1) loss2 = L.MSE(fc2, label=Y2) net = mobula.Net() loss = L.L1Loss(loss1 + loss2) net.set_loss(loss) L1Loss = mobula.get_layer("L1Loss") Add = mobula.get_layer(L1Loss.model.name) net.lr = 0.5 for i in range(30): net.forward() net.backward() print("Iter: %d, Cost: %f" % (i, loss.Y)) # check forward t1 = np.dot(X.reshape((4, 2)), fc1.W.T) + fc1.b.T t2 = np.dot(X.reshape((4, 2)), fc2.W.T) + fc2.b.T # forward one more time, because of the change of weights last backward net.forward() assert np.allclose(fc1.Y, t1) assert np.allclose(fc2.Y, t2)
def __init__(self, X, labels): data, label = L.Data([X, labels], "data", batch_size=100)() conv1 = L.Conv(data, "conv1", dim_out=20, kernel=5) pool1 = L.Pool(conv1, "pool1", pool=L.Pool.MAX, kernel=2, stride=2) conv2 = L.Conv(pool1, "conv2", dim_out=50, kernel=5) pool2 = L.Pool(conv2, "pool2", pool=L.Pool.MAX, kernel=2, stride=2) fc3 = L.FC(pool2, "fc3", dim_out=500) relu3 = L.ReLU(fc3, "relu3") pred = L.FC(relu3, "pred", dim_out=10) loss = L.SoftmaxWithLoss(pred, "loss", label=label) # Net Instance self.net = mobula.Net() # Set Loss Layer self.net.set_loss(loss)
def test_saver(): filename = "tmp.net" X = np.random.random((4,2,1,1)) Y = np.random.random((4, 10)) x, y = L.Data([X, Y]) fc = L.FC(x, dim_out = 10) with M.name_scope("mobula"): prelu = L.PReLU(fc) loss = L.MSE(prelu, label = y) net = M.Net() net.set_loss(loss) init_params(fc) init_params(prelu) # save mobula M.save_scope(filename, "mobula") params_f = clear_params(fc) params_p = clear_params(prelu) for p in fc.params + prelu.params: assert np.isnan(p).all() M.load_scope(filename) for p in fc.params: assert np.isnan(p).all() for i, p in enumerate(prelu.params): assert np.allclose(p, params_p[i]) init_params(fc) init_params(prelu) # save all M.save_scope(filename) params_f = clear_params(fc) params_p = clear_params(prelu) for p in fc.params + prelu.params: assert np.isnan(p).all() M.load_scope(filename) for i, p in enumerate(fc.params): assert np.allclose(p, params_f[i]) for i, p in enumerate(prelu.params): assert np.allclose(p, params_p[i]) os.remove(filename)
def test_net_saver(): filename = "tmp.net" X = np.random.random((4,2,1,1)) Y = np.random.random((4, 10)) x, y = L.Data([X, Y]) x = L.FC(x, dim_out = 10) with M.name_scope("mobula"): x = L.PReLU(x) loss = L.MSE(x, label = y) net = M.Net() net.set_loss(loss) net.lr = 0.01 for i in range(10): net.forward() net.backward() net.save(filename) # random init layers lst = M.get_layers("/") assert len(lst) == 4 # Data, FC, PReLU, MSE k = 0 rec = [] for l in lst: for i in range(len(l.params)): rec.append(l.params[i]) l.params[i][...] = None k += 1 assert k == 3 # FC.W, FC.b, PReLU.a for l in lst: for i in range(len(l.params)): assert np.isnan(l.params[i]).all() net.load(filename) h = 0 for l in lst: for i in range(len(l.params)): assert np.allclose(rec[h], l.params[i]) h += 1 os.remove(filename)
def test_net(): X = np.random.random((4, 2, 1, 1)) Y1 = np.random.random((4, 5)) Y2 = np.random.random((4, 5)) [x, y1, y2] = L.Data([X, Y1, Y2]) fc0 = L.FC(x, dim_out=10) fc1 = L.FC(fc0, dim_out=5) fc2 = L.FC(fc0, dim_out=5) loss1 = L.MSE(fc1, label=y1) loss2 = L.MSE(fc2, label=y2) net = mobula.Net() net.set_loss(loss1 + loss2) net.lr = 0.01 for i in range(10): net.forward() net.backward() net.time() print("Iter: %d, Cost: %f" % (i, loss1.Y + loss2.Y)) assert np.allclose(fc0.dY, fc1.dX + fc2.dX)
# LeNet-5 data, label = L.Data([X, labels], "data", batch_size = 100) conv1 = L.Conv(data, "conv1", dim_out = 20, kernel = 5) pool1 = L.Pool(conv1, "pool1", pool = L.Pool.MAX, kernel = 2, stride = 2) relu1 = L.ReLU(pool1, "relu1") conv2 = L.Conv(relu1, "conv2", dim_out = 50, kernel = 5) pool2 = L.Pool(conv2, "pool2", pool = L.Pool.MAX, kernel = 2, stride = 2) relu2 = L.ReLU(pool2, "relu2") fc3 = L.FC(relu2, "fc3", dim_out = 500) relu3 = L.ReLU(fc3, "relu3") pred = L.FC(relu3, "pred", dim_out = 10) loss = L.SoftmaxWithLoss(pred, "loss", label = label) # Net Instance net = mobula.Net() # Set Loss Layer net.set_loss(loss) # Set Solver solver = S.Momentum(gamma = 0.1, stepsize = 1000) solver.lr_policy = S.LR_POLICY.STEP net.set_solver(S.Momentum()) # Learning Rate net.lr = 0.005 ''' If start_iter > 0, load the existed model and continue to train. Otherwise, initialize weights and start to train.