コード例 #1
0
    def load_params(self):
        # load mean params first
        mean_vals = gnu.load_pkl(self.mean_param_file)
        mean_params = np.zeros((1, self.total_params_dim))

        # set camera model first
        mean_params[0, 0] = 5.0

        # set pose (might be problematic)
        mean_pose = mean_vals['mean_pose'][3:]
        # set hand global rotation
        mean_pose = np.concatenate( (np.zeros((3,)), mean_pose) )
        mean_pose = mean_pose[None, :]

        # set shape
        mean_shape = np.zeros((1, 10))
        mean_params[0, 3:] = np.hstack((mean_pose, mean_shape))
        # concat them together
        mean_params = np.repeat(mean_params, self.batch_size, axis=0)
        self.mean_params = torch.from_numpy(mean_params).float()
        self.mean_params.requires_grad = False

        # define global rotation
        self.global_orient = torch.zeros((self.batch_size, 3), dtype=torch.float32).cuda()
        # self.global_orient[:, 0] = np.pi
        self.global_orient.requires_grad = False

        # load smplx-hand faces
        hand_info_file = osp.join(self.opt.model_root, self.opt.smplx_hand_info_file)

        self.hand_info = gnu.load_pkl(hand_info_file)
        self.right_hand_faces_holistic = self.hand_info['right_hand_faces_holistic']        
        self.right_hand_faces_local = self.hand_info['right_hand_faces_local']
        self.right_hand_verts_idx = np.array(self.hand_info['right_hand_verts_idx'], dtype=np.int32)
コード例 #2
0
def __calc_hand_mesh(hand_type, pose_params, betas, smplx_model):
    hand_rotation = pose_params[:, :3]
    hand_pose = pose_params[:, 3:]
    body_pose = torch.zeros((1, 63)).float()

    assert hand_type in ['left_hand', 'right_hand']
    if hand_type == 'right_hand':
        body_pose[:, 60:] = hand_rotation  # set right hand rotation
        right_hand_pose = hand_pose
        left_hand_pose = torch.zeros((1, 45), dtype=torch.float32)
    else:
        body_pose[:, 57:60] = hand_rotation  # set right hand rotation
        left_hand_pose = hand_pose
        right_hand_pose = torch.zeros((1, 45), dtype=torch.float32)

    output = smplx_model(global_orient=torch.zeros((1, 3)),
                         body_pose=body_pose,
                         betas=betas,
                         left_hand_pose=left_hand_pose,
                         right_hand_pose=right_hand_pose,
                         return_verts=True)

    hand_info_file = "extra_data/hand_module/SMPLX_HAND_INFO.pkl"
    hand_info = gnu.load_pkl(hand_info_file)
    hand_output = extract_hand_output(output,
                                      hand_type=hand_type.split("_")[0],
                                      hand_info=hand_info,
                                      top_finger_joints_type='ave',
                                      use_cuda=False)

    pred_verts = hand_output['hand_vertices_shift'].detach().numpy()
    faces = hand_info[f'{hand_type}_faces_local']
    return pred_verts[0], faces
コード例 #3
0
def visualize_prediction(args, demo_type, smpl_type, smpl_model, pkl_files,
                         visualizer):
    for pkl_file in pkl_files:
        # load data
        saved_data = gnu.load_pkl(pkl_file)

        image_path = saved_data['image_path']
        img_original_bgr = cv2.imread(image_path)
        if img_original_bgr is None:
            print(f"{image_path} does not exists, skip")

        print("--------------------------------------")

        demo_type = saved_data['demo_type']
        assert saved_data['smpl_type'] == smpl_type

        hand_bbox_list = saved_data['hand_bbox_list']
        body_bbox_list = saved_data['body_bbox_list']
        pred_output_list = saved_data['pred_output_list']

        if not saved_data['save_mesh']:
            __calc_mesh(demo_type, smpl_type, smpl_model,
                        img_original_bgr.shape[:2], pred_output_list)
        else:
            pass

        pred_mesh_list = demo_utils.extract_mesh_from_output(pred_output_list)

        # visualization
        res_img = visualizer.visualize(img_original_bgr,
                                       pred_mesh_list=pred_mesh_list,
                                       body_bbox_list=body_bbox_list,
                                       hand_bbox_list=hand_bbox_list)

        # save result image
        demo_utils.save_res_img(args.out_dir, image_path, res_img)

        # save predictions to pkl
        if args.save_pred_pkl:
            args.use_smplx = smpl_type == 'smplx'
            demo_utils.save_pred_to_pkl(args, demo_type, image_path,
                                        body_bbox_list, hand_bbox_list,
                                        pred_output_list)
コード例 #4
0
def __get_data_type(pkl_files):
    for pkl_file in pkl_files:
        saved_data = gnu.load_pkl(pkl_file)
        return saved_data['demo_type'], saved_data['smpl_type']