コード例 #1
0
def log_likelihood(theta, d, covd):
    p_zeta,p_Thetaeq,p_gamma,p_alpha=theta
    WI,WV=mocklc.comp_weight(nside,p_zeta,inc,p_Thetaeq,Thetav,Phiv)
    Wp=WV[:,:]*WI[:,:]
    #KS=p_alpha*gpkernel.Matern32(sep,p_gamma)
    KS=p_alpha*gpkernel.RBF(sep,p_gamma)
    Cov = covd + Wp@[email protected]
    sign,logdet=np.linalg.slogdet(Cov)
    Pi_d=scipy.linalg.solve(Cov,d,assume_a="pos")
    prop = -0.5*logdet-0.5*d@Pi_d #-0.5*np.shape(cov)[0]*np.log(2.0*np.pi)
    return prop
コード例 #2
0
def log_likelihood(theta, d, covd):
    p_zeta, p_Thetaeq, p_gamma, p_alpha, p_tau, p_Pspin = theta
    wspin = 2 * np.pi / p_Pspin
    Phiv = np.mod(wspin * obst, 2 * np.pi)
    WI, WV = mocklc.comp_weight(nside, p_zeta, inc, p_Thetaeq, Thetav, Phiv)
    Wp = WV[:, :] * WI[:, :]
    #KS=p_alpha*gpkernel.Matern32(sep,p_gamma)
    KS = gpkernel.RBF(sep, p_gamma)
    KT = gpkernel.Matern32(obst, tau=p_tau)
    WSWT = (Wp @ KS @ Wp.T)
    Kw = p_alpha * KT * (WSWT)
    ######
    Cov = covd + Kw
    try:
        sign, logdet = np.linalg.slogdet(Cov)
        Pi_d = scipy.linalg.solve(Cov, d, assume_a="pos")
        prop = -0.5 * logdet - 0.5 * d @ Pi_d  #-0.5*np.shape(cov)[0]*np.log(2.0*np.pi)
        return prop
    except:
        return -np.inf
コード例 #3
0
#inc=0.0
Thetaeq = np.pi / 2
zeta = 23.4 / 180.0 * np.pi
#zeta=60.0/180.0*np.pi
Pspin = 23.9344699 / 24.0  #Pspin: a sidereal day
wspin = 2 * np.pi / Pspin
Porb = 365.242190402
#Porb=30.0
worb = 2 * np.pi / Porb
N = 1024
expt = Porb  #observation duration 10d
obst = np.linspace(Porb / 4, expt + Porb / 4, N)

Thetav = worb * obst
Phiv = np.mod(wspin * obst, 2 * np.pi)
WI, WV = mocklc.comp_weight(nside, zeta, inc, Thetaeq, Thetav, Phiv)
W = WV[:, :] * WI[:, :]

npix = hp.nside2npix(nside)
#Ainit = np.dot(np.diag(1/np.sum(Ainit[:,:],axis=1)),Ainit)
#Xinit = np.dot(np.diag(1/np.sum(Xinit[:,:],axis=1)),Xinit)

lcall = np.dot(np.dot(W, Ainit), Xinit)

noiselevel = 0.0001
lcall = lcall + noiselevel * np.mean(lcall) * np.random.normal(0.0, 1.0)
##################################################
lcall = np.dot(np.diag(1 / np.sum(lcall[:, :], axis=1)), lcall)

nside = 16
npix = hp.nside2npix(nside)