コード例 #1
0
def createCompositeExp(inputData, subspaceDict, knn=knn):
    print('----createCompositeHeidi----')

    #INITIALIZING THE HEIDI MATRIX
    row = inputData.shape[0]
    heidi_matrix = np.zeros(shape=(row, row), dtype=np.uint64)
    imgDict = {}
    bitmask = []
    subspaceList = []
    colorList = []
    #factor=1
    j = 1
    print(subspaceDict)
    #FOR EACH COLOR IN SUBSPACE DICTIONARY
    for color in subspaceDict:
        allsubspace = subspaceDict[color][0]
        #1. SORTING AND FILTERING THE DATA
        if len(allsubspace) == 1:
            param = {}
            param['columns'] = allsubspace
            param['order'] = [True for i in param['columns']]
            ordering = 'dimension'
        else:
            param = {}
            #ordering='pca_ordering'
            #ordering='euclidian_distance'
            ordering = 'knn_bfs'
            #ordering='mst_distance'
        #print(allsubspace,ordering)
        filtered_data = inputData[allsubspace + ['classLabel']]
        filtered_data['classLabel_orig'] = filtered_data['classLabel'].values

        #print(filtered_data)
        sorted_data = op.sortbasedOnclassLabel(filtered_data, ordering, param)

        #SELECTING COLUMNS OF INPUT DATA BASED ON SUBSPACE
        filtered_data = sorted_data[allsubspace]
        subspace = filtered_data
        np_subspace = subspace.values  #NEED TO CHANGE IF COL IS A LIST

        #CREATING KNN MATRIX
        nbrs = NearestNeighbors(n_neighbors=knn,
                                algorithm='ball_tree').fit(np_subspace)
        hm = nbrs.kneighbors_graph(np_subspace).toarray()
        temp = np.flip(hm, 0)

        bitmask = bitmask + [temp == 0]
        subspaceList = subspaceList + [set(allsubspace)]

        colorList = colorList + [color]
        hm = hm.astype(np.uint64)

        img, _ = hh.generateHeidiImage_hex(hm, {1: color})
        hh.saveHeidiImage(img, 'static/output_exp', 'img' + str(j) + '.png')
        j = j + 1
        imgDict[color] = img

    return imgDict, bitmask, subspaceList, colorList
コード例 #2
0
def generateHeidiMatrixResults_test4(outputPath, inputData, k):
    global global_count, global_map_dict
    create_empty_folder(outputPath)
    global_count = 0
    factor = 1
    bit_subspace = {}
    row = inputData.shape[0]
    count = 0
    heidi_matrix = np.zeros(shape=(row, row), dtype=np.uint64)
    allsubspaces = get_all_kd_subspaces(k, inputData.shape[1] - 1)
    print(allsubspaces)
    print('knn:', knn)
    for col in range(0, inputData.shape[1] - 1):
        filtered_data = inputData.iloc[:,
                                       [col,
                                        -1]]  #NEED TO CHANGE IF COL IS A LIST
        param = {}
        param['columns'] = list(filtered_data.columns[:-1])
        param['order'] = [True for i in param['columns']]
        sorted_data = op.sortbasedOnclassLabel(filtered_data, 'dimension',
                                               param)
        subspace = sorted_data.iloc[:, :-1]
        np_subspace = subspace.values  #NEED TO CHANGE IF COL IS A LIST
        #print(np_subspace.shape)
        nbrs = NearestNeighbors(n_neighbors=knn,
                                algorithm='ball_tree').fit(np_subspace)
        temp = nbrs.kneighbors_graph(np_subspace).toarray()
        temp = temp.astype(np.uint64)
        heidi_matrix = heidi_matrix + temp * factor
        factor = factor * 2
        bit_subspace[count] = col
        count += 1

    map_dict, all_info = hh.getMappingDict(heidi_matrix, bit_subspace)
    hh.createLegend(map_dict, all_info, outputPath + '/legend.html')
    img, imgarray = hh.generateHeidiImage(heidi_matrix, map_dict)
    hh.saveHeidiImage(img, outputPath, 'img_bea.png')

    array = sorted_data['classLabel'].value
    algo1_bar, t = hh.createBar(array)
    hh.visualizeConsolidatedImage(imgarray, algo1_bar,
                                  outputPath + '/consolidated_img.png')
    print('visualized consolidated image')
コード例 #3
0
def image():
    #print('---heidicontrollers:image()------')

    #---------------1. INPUT PARAMETER READING ----------------------------------------------
    #INPUT PARAMS FROM WEB PAGE (DIMENSION.HTML)
    #try:
    order_dim = request.args.get('order_dim')
    selected_dim = request.args.get('selectedDim')
    datasetPath = request.args.get('datasetPath')
    grid = request.args.get('grid')
    knn = int(request.args.get('knn'))
    imgType = '_' + request.args.get('imgType')
    if (grid == 'yes'): grid = True
    else: grid = False
    rowfilterDict = ast.literal_eval(request.args.get('filterDict'))
    print('params', order_dim, selected_dim, datasetPath, rowfilterDict,
          imgType, knn)

    # write code here for error handling if order_dim is invalid

    # READING THE DATASET
    data = pd.read_csv(filepath_or_buffer=datasetPath, sep=',', index_col='id')

    #IF THERE IS ANY ROW FILTER OPTION, FILTERING OF ROWS
    for k in rowfilterDict.keys():
        data = data.loc[data[k].isin([rowfilterDict[k]])]

    #CONVERT JAVASCRIPT OBJECT OF ORDERDIM IN PYTHON LIST
    dim = []
    if (order_dim != ''):
        dim = [s for s in order_dim.split(' ')]

    #FILTERING THE COLUMNS IN ORDERDIM AND CLASSLABEL
    filtered_data = pd.concat([
        data.loc[:, dim + ['classLabel']], data.loc[:,
                                                    list(rowfilterDict.keys())]
    ],
                              axis=1)
    #filename_data=hd.normalize_data(filtered_data)
    filtered_data['classLabel_orig'] = filtered_data['classLabel'].values
    #filtered_data=filtered_data.drop(list(rowfilterDict.keys()),axis=1)
    print(filtered_data.columns, filtered_data)

    #---------------2. ORDERING POINTS ----------------------------------------------

    # IF ORDERDIM LENGTH =1 THEN ORDERING BY SORTED ORDER ELSE SOME OTHER ORDERING SCHEMA
    if len(dim) == 1:
        param = {}
        param['columns'] = list(filtered_data.columns[:-1])
        param['order'] = [True for i in param['columns']]
        sorted_data = op.sortbasedOnclassLabel(filtered_data, 'dimension',
                                               param)
        # REINDEXING THE INPUT DATA (TO BE USED LATER)
        sorting_order = sorted_data.index
        data = data.reindex(sorting_order)
    else:
        print('mst ordering')
        param = {}
        sorted_data = op.sortbasedOnclassLabel(
            filtered_data, 'knn_bfs',
            param)  #'mst_distance' #connected_distance
        #sorted_data=op.sortbasedOnclassLabel(filtered_data,'euclidian_distance',param)
        sorting_order = sorted_data.index
        data = data.reindex(sorting_order)
        '''4-JUNE BEA (UNCOMMENT IF YOU WANT BEA)
            output='static/output'
            t=filtered_data.copy()
            del t['classLabel_orig']
            hd_matrix,_,_=hd.generateHeidiMatrixResults_noorder(output,t,20) # remove waste sorted_data
            #print(hd_matrix)
            c=filtered_data['classLabel'].values
            print('calling bea')
            sorting_order=bea2.BEA_clusterwise(hd_matrix,c)
            #print('sorted order obtained is ',sorting_order)
            filtered_data['classLabel_orig']=filtered_data['classLabel']
            data=data.reset_index()
            data=data.reindex(sorting_order)
            data.index=data['id']
            del data['id']
            '''
        print('SUCCESSFULLY ORDERED POINTS!!')
    #ORDERING OF POINTS FINISHED

    #---------------3. INPUT PARAMETERS, ORDER DIM + SELECTED DIM + filtering columns ----------------------------------------------
    # CONVERT JAVASCRIPT OBJECT OF SELECT-COLUMN INTO PYTHON LIST
    dims = []
    if (selected_dim != ''):
        dims = [s for s in selected_dim.split(' ')]

    # ORDERDIM + SELECT-DIM
    dims = dims + dim

    # REMOVING THE DUPLICATED FROM MERGED LIST
    dims = list(set(dims))
    # FINAL FILTERING THE COLUMNS
    filtered_data = data.loc[:, dims + ['classLabel']]
    #print(filtered_data,filtered_data.columns,filtered_data.describe())

    #--------------- 4. BASIC HEIDI IMAGE ---------------------------------------------------------------
    output = 'static/output'
    matrix, bs, sorted_data = hd.generateHeidiMatrixResults_noorder(
        output, filtered_data, knn)
    print('----matrix generated ---')

    #5-june

    img, bit_subspace = hd.generateHeidiMatrixResults_noorder_helper(
        matrix, bs, output, sorted_data, 'legend_heidi')

    output = 'static/output'
    filename = 'consolidated_img.png'
    img.save(output + '/' + filename)
    print('--generated image ---')

    #lbl=rg.regionLabelling_8(matrix)
    lbl = np.zeros((matrix.shape[0], matrix.shape[1]))
    print('--region labelling done ---')

    dbc.deleteAllNodes(labelname=os.path.basename(datasetPath).split('.')[0] +
                       '_heidi')
    dbc.saveMatrixToDatabase_leaf(
        img,
        bs,
        'static/output',
        sorted_data,
        lbl,
        labelname=os.path.basename(datasetPath).split('.')[0] + '_heidi')
    dbc.saveColorToDatabase(
        bit_subspace,
        os.path.basename(datasetPath).split('.')[0] + '_heidi')
    filtered_data.to_csv('static/output/sortedData.csv')
    x = list(filtered_data['classLabel'].values)
    #--------------- SAVING IMAGE INFO AND LABEL COLORS, ONE TIME ---------------------------------------------------------------
    dbc.saveClassLabelColorsInDatabase(os.path.basename(datasetPath),
                                       list(set(x)))
    l = []
    label = []
    for i in set(x):
        c = x.count(i)
        l.append(c)
        label.append(i)
    l = ','.join([str(i) for i in l])
    label = ','.join([str(i) for i in label])
    dbc.saveInfoToDatabase(img.size[0], img.size[1],
                           os.path.basename(datasetPath), l, label)
    #check above line (WARNING)
    #storing the re-indexed data at output folder
    output = 'static/output'
    data.to_csv(output + '/sortedData.csv', index=True)
    '''
        #--------------- 4B. CLOSED HEIDI IMAGE ---------------------------------------------------------------
        #4-JUNE
        #CODE FOR CREATING CLOSED IMAGE AND SAVING IN DATABASE
        #matrix,bs,sorted_data=hd.generateHeidiMatrixResults_noorder(output,filtered_data,20)
        bm = ch.get_bit_map(filtered_data.shape[1]-1)
        map_dict,_=hh.getMappingDict(matrix,bs)
        matrix,val_map=ch.compress_heidi(matrix,bm)
        print('val_map:',val_map,bs)
        lbl=rg.regionLabelling_8(matrix)
        img,dict1=hd.generateHeidiMatrixResults_noorder_helper(matrix,bs,output,sorted_data,'legend_closed',val_map,map_dict)
        dbc.deleteAllNodes(labelname=os.path.basename(datasetPath).split('.')[0]+'_closed')
        dbc.saveMatrixToDatabase_leaf_v2(img,bs,'static/output',sorted_data,lbl,labelname=os.path.basename(datasetPath).split('.')[0]+'_closed')
        dbc.saveColorToDatabase(dict1,os.path.basename(datasetPath).split('.')[0]+'_closed')
        output='static/output'
        filename='closed_img.png'
        img.save(output+'/'+filename)
        #CLOSED IMAGE CODE END
        
        #--------------- 5. COMPOSITE HEIDI IMAGE ---------------------------------------------------------------
        #5june
        #HEIDI image to composite and saving in database
        color_dict,_=dbc.loadColorFromDatabase(os.path.basename(datasetPath).split('.')[0]+'_heidi')
        temp={}
        for k in color_dict:
            temp[k.replace('H','#')]=color_dict[k]
        print('color_dict',temp,filtered_data)
        img,matrix=hd.createCompositeHeidi(filtered_data,temp,knn=20)
        lbl=rg.regionLabelling_8(matrix)
        dbc.deleteAllNodes(labelname=os.path.basename(datasetPath).split('.')[0]+'_composite')
        dbc.saveMatrixToDatabase_leaf_v2(img,'','static/output',sorted_data,lbl,labelname=os.path.basename(datasetPath).split('.')[0]+'_composite')
        print('saved composite image in database!!')
        output='static/output'
        filename='consolidated_composite.png'
        img.save(output+'/'+filename)
        '''
    #--------------- 6. CLOSED COMPOSITE IMAGE ---------------------------------------------------------------
    '''
        #CLOSED image to composite and saving in database
        color_dict,_=dbc.loadColorFromDatabase(os.path.basename(datasetPath).split('.')[0]+'_closed')
        temp={}
        for k in color_dict:
            temp[k.replace('H','#')]=color_dict[k]
        img,matrix=hd.createCompositeHeidi(filtered_data,temp,knn=20)
        lbl=rg.regionLabelling_8(matrix)
        dbc.deleteAllNodes(labelname=os.path.basename(datasetPath).split('.')[0]+'closed_composite')
        dbc.saveMatrixToDatabase_leaf_v2(img,bs,'static/output',sorted_data,lbl,labelname=os.path.basename(datasetPath).split('.')[0]+'closed_composite')
        print('saved composite image in database!!')
        output='static/output'
        filename='closed_composite.png'
        img.save(output+'/'+filename)
        '''
    '''
        #CODE FOR COMPOSITE IMAGE VISUALIZATION (1-d)
        #img,bs,matrix=hd.generateHeidiMatrixResults_kd(output,filtered_data,1,10) #1 is image type which means 1-d, 2: 2-d ...
        #lbl=rg.regionLabelling_8(matrix)
        #img,dict1=hd.generateHeidiMatrixResults_noorder_helper(matrix,bs,output,sorted_data,'legend_composite')
        #dbc.deleteAllNodes(labelname=os.path.basename(datasetPath).split('.')[0]+'_composite')
        #dbc.saveMatrixToDatabase_leaf_v2(img,bs,'static/output',sorted_data,lbl,labelname=os.path.basename(datasetPath).split('.')[0]+'_composite')
        #dbc.saveColorToDatabase(dict1,os.path.basename(datasetPath).split('.')[0]+'_composite')
        #print('saved composite image in database!!')
        
        '''
    #4-JUNE
    #loading heidi image
    #3sep
    pixels = dbc.databasefilter(
        labelname=os.path.basename(datasetPath).split('.')[0] + imgType,
        color='ALL')
    width, height, scale, class_count, class_label = dbc.getImageParams(
        os.path.basename(datasetPath))
    class_count = class_count.split(',')
    perclustercount = [int(i) for i in class_count]
    class_label = class_label.split(',')
    class_label = [int(i) for i in class_label]
    #print('pppp1',width,height,scale)
    color_dict = dbc.getColorFromTopLegend(os.path.basename(datasetPath))
    #print(color_dict)
    img = dbc.drawImage(pixels,
                        width,
                        height,
                        scale,
                        perclustercount,
                        class_label,
                        color_dict,
                        grid=grid)
    print(os.path.basename(datasetPath))
    dbc.updateImageInfo(
        img.size[0], img.size[1],
        os.path.basename(datasetPath))  #LEGEND SPACING AND OTHER STUFF
    output = 'static/output'
    filename = 'consolidated_img.png'
    img.save(output + '/' + filename)
    #3sep
    return json.dumps({'output': str("123"), 'subspace': str("123")})
コード例 #4
0
def createCompositeHeidi_v1(inputData, subspaceDict, knn=knn):
    print('createCompositeHeidi:', subspaceDict)
    bit_subspace = {}
    row = inputData.shape[0]
    heidi_matrix = np.zeros(shape=(row, row), dtype=np.uint64)
    factor = 1
    for color in subspaceDict:
        print(color)

        #1. GET SORTED DATA FOR EACH COLOR
        allsubspace = []
        for subspace in subspaceDict[color]:
            allsubspace = allsubspace + subspace
        allsubspace = list(set(allsubspace))
        #print(allsubspace,len(allsubspace))
        if len(allsubspace) == 1:
            param = {}
            param['columns'] = allsubspace
            param['order'] = [True for i in param['columns']]
            ordering = 'dimension'
        else:
            param = {}
            #ordering='pca_ordering'
            ordering = 'euclidian_distance'
            #ordering='mst_distance'
        filtered_data = inputData[allsubspace + ['classLabel']]
        filtered_data['classLabel_orig'] = filtered_data['classLabel'].values
        sorted_data = op.sortbasedOnclassLabel(filtered_data, ordering, param)
        #print(allsubspace,sorted_data)
        #2. GENERATING HEIDI MATRIX FOR EACH COLOR
        hm = np.zeros(shape=(row, row), dtype=np.uint64)
        c = 0
        for subspace in subspaceDict[color]:
            filtered_data = sorted_data[subspace]
            subspace = filtered_data
            np_subspace = subspace.values  #NEED TO CHANGE IF COL IS A LIST
            #print(np_subspace.shape)
            nbrs = NearestNeighbors(n_neighbors=knn,
                                    algorithm='ball_tree').fit(np_subspace)
            temp = nbrs.kneighbors_graph(np_subspace).toarray()
            temp = temp.astype(np.uint64)
            if c == 0: hm = hm | temp
            else: hm = hm & temp
        #print(hm,factor*hm)
        heidi_matrix = heidi_matrix + factor * hm
        bit_subspace[factor] = color  #subspaceDict[color]#color
        factor = factor * 2
        #print(factor,allsubspace)
        #print('-----GENERATEiMAGE : generateHeidiImage ------')
        print(bit_subspace, subspaceDict)
        arr = np.zeros((hm.shape[0], hm.shape[1], 3))
        for i in range(hm.shape[0]):
            for j in range(hm.shape[1]):
                if hm[i][j] in bit_subspace.keys():
                    arr[i][j] = list(wb.hex_to_rgb(color))
                else:
                    arr[i][j] = [255, 255, 255]
        # DEBUG IMAGE, ORDEING OF POINTS
        '''
        tmp=arr.astype(np.uint8)
        img_top100 = Image.fromarray(tmp)    
        img_top100.save('temp'+str(factor)+'.png')     
        '''

    print('-----GENERATEiMAGE : generateHeidiImage ------')
    #color_palette = sns.color_palette("cubehelix", 100)
    color_palette = sns.color_palette("cubehelix", 200)
    color_palette = [(int(a * 255), int(b * 255), int(c * 255))
                     for (a, b, c) in color_palette]

    arr = np.zeros((heidi_matrix.shape[0], heidi_matrix.shape[1], 3))
    count = 0
    print(bit_subspace)
    val_color_map = {}
    for i in range(heidi_matrix.shape[0]):
        for j in range(heidi_matrix.shape[1]):
            if heidi_matrix[i][j] in bit_subspace.keys():
                arr[i][j] = list(
                    wb.hex_to_rgb(bit_subspace[heidi_matrix[i][j]]))
            elif heidi_matrix[i][j] in val_color_map.keys():
                arr[i][j] = val_color_map[heidi_matrix[i][j]]
            elif (heidi_matrix[i][j] != 0):
                t = list(color_palette[0])
                #t=list(color_palette[count])
                #arr[i][j]=t
                #count+=1
                #val_color_map[heidi_matrix[i][j]]=t
                #if(count>100): break
            else:
                arr[i][j] = [255, 255, 255]
            #if(heidi_matrix[i][j]==0): arr[i][j]=[0,0,0]
            #else: arr[i][j]=[255,255,255]
    tmp = arr.astype(np.uint8)
    img_top100 = Image.fromarray(tmp)
    img_top100.save('cmp' + str(factor) + '.png')

    #img_top100.save('temp.png')

    #hh.getMappingDict(heidi_matrix,);
    return img_top100, heidi_matrix
コード例 #5
0
def createCompositeHeidi(inputData, subspaceDict, knn=knn):
    print('----createCompositeHeidi----')
    bit_subspace = {}
    row = inputData.shape[0]
    heidi_matrix = np.zeros(shape=(row, row), dtype=np.uint64)
    factor = 1
    f = 0
    for color in subspaceDict:
        print(color)

        #1. GET SORTED DATA FOR EACH COLOR
        allsubspace = []
        for subspace in subspaceDict[color]:
            allsubspace = allsubspace + subspace
        allsubspace = list(set(allsubspace))
        #print(allsubspace,len(allsubspace))
        if len(allsubspace) == 1:
            param = {}
            param['columns'] = allsubspace
            param['order'] = [True for i in param['columns']]
            ordering = 'dimension'
        else:
            param = {}
            #ordering='pca_ordering'
            #ordering='euclidian_distance'
            ordering = 'mst_distance'
        filtered_data = inputData[allsubspace + ['classLabel']]
        filtered_data['classLabel_orig'] = filtered_data['classLabel'].values
        sorted_data = op.sortbasedOnclassLabel(filtered_data, ordering, param)
        print(sorted_data.shape)
        hm = np.zeros(shape=(row, row), dtype=np.uint64)
        c = 0
        for subspace in subspaceDict[color]:
            filtered_data = sorted_data[subspace]
            subspace = filtered_data
            np_subspace = subspace.values  #NEED TO CHANGE IF COL IS A LIST
            #print(np_subspace.shape)
            nbrs = NearestNeighbors(n_neighbors=knn,
                                    algorithm='ball_tree').fit(np_subspace)
            temp = nbrs.kneighbors_graph(np_subspace).toarray()
            temp = temp.astype(np.uint64)
            if c == 0: hm = hm | temp
            else: hm = hm & temp
        #print(hm,factor*hm)
        heidi_matrix = heidi_matrix + factor * hm
        bit_subspace[f] = color  #subspaceDict[color]#color
        f = f + 1
        #bit_subspace[factor]=color#subspaceDict[color]#color
        factor = factor * 2
        #if(color=='#7092ec'): break
    t = np.unique(heidi_matrix)
    #t=[bin(i) for i in t]
    comp_dict = {}
    for k in range(len(t)):
        bin_value = bin(t[k])[::-1]
        subspace_col = [
            index for index, value in enumerate(bin_value) if value == '1'
        ]
        val = []
        for x in subspace_col:
            val = val + [bit_subspace[x]]
        import itertools
        val.sort()
        comp_dict[t[k]] = list(val for val, _ in itertools.groupby(val))
        #print(t[k],bin(t[k]),subspace_col,val)

    import webcolors as wb
    arr = np.zeros((heidi_matrix.shape[0], heidi_matrix.shape[1], 3))
    #color_map={}
    #color_rev_map={}
    #new_color_map={}
    for i in range(heidi_matrix.shape[0]):
        for j in range(heidi_matrix.shape[1]):
            x = comp_dict[heidi_matrix[i][j]]
            if len(x) == 1:
                arr[i][j] = list(wb.hex_to_rgb(x[0]))
            elif (len(x) != 0):
                #print(x)
                x = [
                    list(wb.hex_to_rgb(x))
                    for x in comp_dict[heidi_matrix[i][j]]
                ]
                new_color = tuple(
                    [int(sum(row[i] for row in x) / len(x)) for i in range(3)])
                arr[i][j] = list(new_color)
                #if not new_color in new_color_map: new_color_map[wb.rgb_to_hex(new_color)]=1
                #else:
                #    print('else called')
                #    new_color_map[wb.rgb_to_hex(new_color)]=new_color_map[wb.rgb_to_hex(new_color)]+1
                #color_map[wb.rgb_to_hex(new_color)]=comp_dict[heidi_matrix[i][j]]
                #for k in comp_dict[heidi_matrix[i][j]]:
                #    if not k in color_rev_map:
                #        color_rev_map[k]=set([wb.rgb_to_hex(new_color)])
                #    else:
                #        color_rev_map[k]=color_rev_map[k].union([wb.rgb_to_hex(new_color)])
            else:
                arr[i][j] = [255, 255, 255]

    tmp = arr.astype(np.uint8)
    img_top100 = Image.fromarray(tmp)
    img_top100.save('cmp.png')
    return img_top100, heidi_matrix
コード例 #6
0
def generateHeidiMatrixResults_kd(outputPath, inputData, k, knn=knn):
    global global_count, global_map_dict
    #hh.create_empty_folder(outputPath)
    global_count = 0
    factor = 1
    bit_subspace = {}
    row = inputData.shape[0]
    count = 0
    print('hello', k)
    heidi_matrix = np.zeros(shape=(row, row), dtype=np.uint64)
    allsubspaces = get_all_kd_subspaces(k, inputData.shape[1] - 1)
    print('allsubspaces', allsubspaces)
    frmt = str(inputData.shape[1] - 1) + 'b'
    factor = 1
    bit_subspace = {}
    count = 0
    print('knn:', knn)

    #for col in range(0,inputData.shape[1]-1):
    #hh.create_empty_folder(outputPath+'/t1')
    for i in allsubspaces:
        bin_value = str(format(i, frmt))
        bin_value = bin_value[::-1]
        subspace_col = [
            index for index, value in enumerate(bin_value) if value == '1'
        ]

        filtered_data = inputData.iloc[:, subspace_col +
                                       [-1]]  #NEED TO CHANGE IF COL IS A LIST
        filtered_data['classLabel_orig'] = filtered_data['classLabel'].values
        #param={}
        #param['columns']=list(filtered_data.columns[:-1])
        #param['order']=[True for i in param['columns']]
        if k == 1:
            param = {}
            param['columns'] = list(filtered_data.columns[:-1])
            param['order'] = [True for i in param['columns']]
            ordering = 'dimension'
        else:
            param = {}
            ordering = 'mst_distance'
        sorted_data = op.sortbasedOnclassLabel(filtered_data, ordering, param)
        subspace = sorted_data.iloc[:, :-2]
        np_subspace = subspace.values  #NEED TO CHANGE IF COL IS A LIST
        #print(np_subspace.shape)
        nbrs = NearestNeighbors(n_neighbors=knn,
                                algorithm='ball_tree').fit(np_subspace)
        temp = nbrs.kneighbors_graph(np_subspace).toarray()
        temp = temp.astype(np.uint64)
        heidi_matrix = heidi_matrix + temp * factor
        temp = temp * factor
        factor = factor * 2
        #bit_subspace[count]=subspace_col
        subspace_col_name = [inputData.columns[i] for i in subspace_col]
        print(subspace_col_name)
        bit_subspace[count] = subspace_col_name
        count += 1
        #map_dict,all_info=hh.getMappingDict(temp,bit_subspace,count-1)
        #hh.createLegend(map_dict,all_info,outputPath+'/t1/legend'+str(count)+'.html')
        #img,imgarray=hh.generateHeidiImage(temp,map_dict)
        #hh.saveHeidiImage(img,outputPath,'/t1/img_bea'+str(count)+'.png')
        #array=sorted_data['classLabel'].values
        #algo1_bar,t=hh.createBar(array)
        #hh.visualizeConsolidatedImage(imgarray,algo1_bar,outputPath+'/t1/consolidated_img'+str(count)+'.png')
    #count=0
    map_dict, all_info = hh.getMappingDict(heidi_matrix, bit_subspace, count)
    hh.createLegend(map_dict, all_info, outputPath + '/legend.html')
    img, imgarray = hh.generateHeidiImage(heidi_matrix, map_dict)
    hh.saveHeidiImage(img, outputPath, 'img_bea.png')

    array = sorted_data['classLabel'].values
    print(array)
    algo1_bar, t = hh.createBar(array)
    hh.visualizeConsolidatedImage(imgarray, algo1_bar,
                                  outputPath + '/consolidated_img.png')
    print('visualized consolidated image')
    return img, bit_subspace, heidi_matrix