def sb_profile_only(image_stamp,galmag,color,sblimit,threshold,redshift,title='',plot_profile=True): radius = np.arange(0,3/args.pixscale,1) fluxes = np.zeros(np.size(radius))-99 sky_med,sky_std = mi.sky_value(image_stamp,args.ksky) if np.abs(color)<10: corrected_thresh = color_correction(threshold,color) new_sblimit = corrected_thresh*sblimit threshold=corrected_thresh else: if args.verbose: print("Invalid color value: %.4f"%color) return radius,fluxes,-99,-99,-99,-99 if args.nodilation: image_stamp = mi.sci_nd.gaussian_filter(image_stamp,sigma=1.0) segmap = mi.gen_segmap_sbthresh(image_stamp-sky_med,hsize,hsize,sblimit,args.pixscale,thresh=threshold,Amin=args.areamin,all_detection=True) single_source_map = mi.select_object_map_connected(hsize,hsize,image_stamp,segmap,pixscale=args.pixscale) image_stamp,single_source_map,imglag,segflag = mi.image_validation(image_stamp,single_source_map,args.pixscale,1.0) if segflag==1: return radius,fluxes,-99,-99,-99,-99 radius,fluxes,barx,bary,q,theta = compute_sbprofile(image_stamp-sky_med,single_source_map,args.pixscale) if plot_profile: segmap[segmap!=0]/=1 fig,ax=mpl.subplots(1,2,figsize=(20.6,16)) ax=ax.reshape(np.size(ax)) fig.suptitle(title) ax[0].set_title(r'$K-I=%.4f\ F_\mathrm{correction} = %.5f$'%(color,10**(0.4*(color)))) ax[1].set_title(r'$k=%.4f\ k\sigma=%.5f\ \mathrm{[e^{-}s^{-1}arcsec^{-2}]}\ \ k_\mathrm{uncorr}=%.4f$'%(threshold,new_sblimit,args.sigma0*((1+redshift)/(1+2.0))**(-3))) mpl.subplots_adjust(wspace=0.2,hspace=0.02) ax[0].imshow(np.sqrt(np.abs(image_stamp)),cmap='hot') mi.gen_ellipse(ax[0],barx,bary,3*(2*hsize/args.size),q,-theta) ax[1].plot(radius,fluxes,'o-',color='CornflowerBlue') ax[1].hlines(sblimit,min(radius),max(radius),linestyle='--',color='Crimson') ax[1].hlines(sblimit*threshold,min(radius),max(radius)) ax[1].set_ylim(1.1*min(fluxes),1.1*max(fluxes)) # ax[3].hlines(sblimit*1.5*((1+redshift)/(1+4.0))**(-3),min(rad),max(rad),linestyle='-',color='LimeGreen') ax[1].set_xlabel(r"$r\ [\mathrm{pix}]$") ax[1].set_ylabel(r"$f(r)\ [\mathrm{e^{-}s^{-1}arcsec^{-2}}]$") fig.canvas.mpl_connect('key_press_event',exit_code) mpl.show() return radius,fluxes,barx,bary,q,theta
def montecarlo_sky(image,segmap,sky_med,sblimit,hsize,ntries=100): # high_segmap = mi.gen_segmap_sbthresh(image-sky_med,hsize,hsize,sblimit,args.pixscale,thresh=3,Amin=args.areamin,all_detection=True) N,M=image.shape Npixs=[] for n in range(ntries): xr = npr.randint(0,N) yr = npr.randint(0,M) single_source_map = mi.select_object_map_connected(yr,xr,image,segmap,pixscale=args.pixscale) # fig,ax=mpl.subplots() # ax.imshow(single_source_map,cmap='YlGnBu_r') # fig.canvas.mpl_connect('key_press_event',exit_code) # mpl.show() Npixs.append(np.size(single_source_map[single_source_map==1])) Npixs=np.array(Npixs) mpl.hist(Npixs,bins=50) return np.mean(Npixs),np.std(Npixs),np.median(Npixs)
def find_pairs_and_clumps(image_stamp,redshift,galmag,color,hsize,threshold,fractions,sblimit,pixelscale,zeropoint,ksky=3.0,Areamin=10,Aperture=0.5,no_dilation=True,degrade=None,size=5,safedist=1.0,title=None,plot_results=False,segmap_output=False,erosion=[3],verbose=False,ident=None,zphot_sel=None): if np.amax(image_stamp)==np.amin(image_stamp): if verbose: print("Invalid data values: %.4f,%.4f"%(np.amax(image_stamp),np.amin(image_stamp))) return {} dilate = define_structure(size) sky_med,sky_std = mi.sky_value(image_stamp,ksky) if degrade is not None: N,M=image_stamp.shape image_stamp = mi.rebin2d(image_stamp,int(N/degrade),int(M/degrade),flux_scale=True) pixelscale*=degrade if no_dilation: image_smooth = mi.sci_nd.gaussian_filter(image_stamp,sigma=1.0) if args.error: factor=-1.0 else: factor=1.0 if np.abs(color)<10: corrected_thresh = color_correction(threshold,color) new_sblimit = corrected_thresh*sblimit # if verbose: # print("K-I=%.4f\t old sb limit = %.5f\t new sb limit = %.5f counts/s/arcsec**2"%(color,threshold*sblimit,new_sblimit)) threshold=corrected_thresh elif np.abs(color)>10: if verbose: print("Invalid color value: %.4f"%color) return {} segmap = mi.gen_segmap_sbthresh(factor*(image_smooth-sky_med),hsize,hsize,sblimit,pixelscale,thresh=threshold,Amin=Areamin,all_detection=True) single_source_map = mi.select_object_map_connected(hsize,hsize,factor*image_smooth,segmap,pixscale=pixelscale,radius=Aperture) image_smooth,single_source_map,imglag,segflag = mi.image_validation(image_smooth,single_source_map,pixelscale,safedist) # fig,ax=mpl.subplots(1,3,figsize=(25,10)) # ax[0].imshow(image_smooth) # ax[1].imshow(segmap) # ax[2].imshow(single_source_map) # fig.canvas.mpl_connect('key_press_event',exit_code) # mpl.show() if no_dilation: dilated_map = single_source_map else: dilated_map = mi.sci_nd.binary_dilation(single_source_map,structure=dilate).astype(np.int32) gal_selection,gal_magnitudes = galaxy_map(image_stamp,segmap,zeropoint,sky_med,factor) ngals=np.amax(gal_selection) # FullSet={} if verbose: print('Ngals=%i'%ngals) for i in range(ngals): GalPositionsBar={} GalPositionsMax={} GalMags={} GalDistances={} GalSizes={} single_gal_map=gal_selection.copy() single_gal_map[gal_selection!=(i+1)]=0 single_gal_map[gal_selection==(i+1)]=1 # fig,ax=mpl.subplots(1,4,figsize=(25,12)) # ax[0].imshow(factor*image_smooth,vmin=0) # ax[1].imshow(segmap) # ax[2].imshow(gal_selection) # ax[3].imshow(single_gal_map) # fig.canvas.mpl_connect('key_press_event',exit_code) # mpl.show() nregs=[] nregs2=[] # fractions = [0.2,1.0]#np.linspace(0,1,101) Xcen,Ycen=mi.barycenter(factor*image_stamp,single_gal_map) if zphot_sel is None: prob_dist = 1.0 prob_dist_area = 1.0 else: GalDists = mi.dist(Ycen,Xcen,zphot_sel[:,0],zphot_sel[:,1]) kmin = np.argmin(GalDists) dmin = GalDists[kmin] vpair=500. #km/s redshift_error = np.sqrt( vpair*vpair + 200*200. + 20000*20000.)/2.9979e5*(1+redshift) if dmin < 1.0/pixelscale: z,zl,zu = zphot_sel[kmin,2],zphot_sel[kmin,3],zphot_sel[kmin,4] prob_dist = probability_zphot(z,zl,zu,redshift-redshift_error,redshift+redshift_error) else: prob_dist = -99 if gal_magnitudes[i]<MagCapak[0]: prob_dist_area=0.0 else: NCounts = simps(NumCapak[MagCapak<gal_magnitudes[i]],MagCapak[MagCapak<gal_magnitudes[i]]) radius = mi.dist(Ycen,Xcen,hsize,hsize)*pixelscale prob_dist_area = max(1-NCounts/(3600.*3600.)*radius*radius*np.pi,0) for f in fractions: S = get_segmap_level(factor*image_smooth,single_gal_map,f) clump_map_full,nr= mi.sci_nd.label(S) clump_map_clean,nr2 = clean_map(clump_map_full,minarea=Areamin) # fig,ax=mpl.subplots(1,2) # ax[0].imshow(clump_map_full) # ax[1].imshow(clump_map_clean) # mpl.show() M,Pb,Pm,Sc=get_clump_stats(factor*image_stamp,clump_map_clean,zeropoint) GalMags[str(f)]=M GalPositionsBar[str(f)]=Pb GalPositionsMax[str(f)]=Pm GalSizes[str(f)]=Sc nregs.append(nr) nregs2.append(nr2) for f in fractions: FP = GalPositionsBar[str(f)] nclumps=np.shape(FP)[0] DistsSingle=np.zeros(nclumps) for n in range(nclumps): DistsSingle[n] = pixelscale*np.sqrt((FP[n,0]-Xcen)*(FP[n,0]-Xcen)+(FP[n,1]-Ycen)*(FP[n,1]-Ycen)) GalDistances[f]=DistsSingle if verbose: print('\t %i ----> f=%.2f \t nclumps=%i'%(i,f,nclumps)) if verbose: print(50*'=') FullSet[i+1]={} FullSet[i+1]['weight']=[prob_dist,prob_dist_area] FullSet[i+1]['mags']=GalMags FullSet[i+1]['posibar']=GalPositionsBar FullSet[i+1]['posimax']=GalPositionsMax FullSet[i+1]['dist']=GalDistances FullSet[i+1]['size']=GalSizes ## Real_Sizes = Sizes - SizesPSF if plot_results: print("mag_cat=",galmag) print('sky median = %.5f +- %.6f'%(sky_med,sky_std)) print("sky_threshold = %.8f (sigma = %.8f)"%(sblimit*threshold,threshold)) print("Redshift = %.4f"%redshift) # mpl.rcParams['image.cmap']='gist_stern_r' # mpl.rcParams['axes.labelsize']=12 # mpl.rcParams['xtick.labelsize']=10 # mpl.rcParams['ytick.labelsize']=10 # rad,flux,xc,yc,q,theta = compute_sbprofile(image_smooth-sky_med,single_source_map,pixelscale) # radPSF,fluxPSF,xcPSF,ycPSF,qPSF,thetaPSF = compute_sbprofile(psf_image-sky_med,single_source_map_psf,pixelscale) #============================================================================== # PAPER FIGURE #============================================================================== sidecut=40 import matplotlib.colors as mpc import matplotlib.cm as cm # from sklearn.cluster import MeanShift, estimate_bandwidth # from sklearn.datasets.samples_generator import make_blobs # # centers = [[1, 1], [-1, -1], [1, -1]] # X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) figS,axS=mpl.subplots() dmax = 20/(cosmos.angular_distance(redshift)/(180/np.pi*3600)*1000) new_image = (factor*image_stamp) hsize_new = new_image.shape[0]/2 if 'Hband' in args.image: CMAP='Reds_r' elif 'Iband' in args.image: CMAP='YlGnBu_r' else: CMAP='viridis' VMAX = np.amax(new_image[hsize_new-15:hsize_new+15,hsize_new-15:hsize_new+15]) axS.imshow(np.abs(new_image),cmap=CMAP,extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale),vmax=VMAX) mi.gen_circle(axS,0,0,dmax,color='white',lw=3) colors = ['gold','lime','red','cyan','cyan',\ 'orange','blue','black','yellow','magenta',\ 'brown','gray','Olive','OrangeRed','Coral','Yellow','Magenta','Thistle',\ 'SpringGreen','Turquoise','RosyBrown','Silver','SlateGray','Black',\ 'Aquamarine','LimeGreen','PeachPuff','Lavender','MediumOrchid'] P=np.array([]) for k in range(ngals): single_gal_map=gal_selection.copy() single_gal_map[gal_selection!=(k+1)]=0 single_gal_map[gal_selection==(k+1)]=1 gps,nc = detect_all_clumps(FullSet[k+1],np.arange(0.1,0.8,0.1)) P=np.append(P,gps) Xcen,Ycen=mi.barycenter(new_image,single_gal_map) GalDists = mi.dist(Ycen,Xcen,zphot_sel[:,0],zphot_sel[:,1]) kmin = np.argmin(GalDists) dmin = GalDists[kmin] # vpair=500. #km/s # z_search = vpair/2.9979e5*(1+redshift) # z_spec_err = 0.0017*(1+redshift) # z_phot_err = 0.1*(1+redshift) # redshift_error = np.sqrt( z_search*z_search + z_spec_err*z_spec_err + z_phot_err*z_phot_err) vpair=500. #km/s redshift_error = np.sqrt( vpair*vpair + 200*200. + 20000*20000.)/2.9979e5*(1+redshift) if dmin < 1.0/pixelscale: z,zl,zu = zphot_sel[kmin,2],zphot_sel[kmin,3],zphot_sel[kmin,4] prob_dist = probability_zphot(z,zl,zu,redshift-redshift_error,redshift+redshift_error,plot_results=True) else: prob_dist = -99 print('p(z), on this run',prob_dist) X = pixelscale*(gps[:,1]-hsize_new+0.5) Y = pixelscale*(gps[:,0]-hsize_new+0.5) axS.plot(X,Y,'o',mfc='none',mec=colors[k],ms=20,mew=3) S = get_segmap_level(factor*image_smooth,single_gal_map,1.0) # mi.draw_border(axS,S,colors[k],extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale)) NDS = define_structure(3) axS.contour(mi.sci_nd.binary_dilation(S,structure=NDS).astype(np.int),levels=[0.5],colors=colors[k],linewidths=3.0,extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale)) for eixo in [axS]: for t in eixo.xaxis.get_ticklines(): t.set_color('white') for t in eixo.yaxis.get_ticklines(): t.set_color('white') for side in ['left','top','bottom','right']: eixo.spines[side].set_color('white') P = P.reshape([len(P)/2,2]) ZF=1.30 axS.set_xlim(-hsize_new*pixelscale/ZF,hsize_new*pixelscale/ZF) axS.set_ylim(-hsize_new*pixelscale/ZF,hsize_new*pixelscale/ZF) axS.set_xlabel(r'$\Delta \alpha\ [\mathrm{arcsec}]$') axS.set_ylabel(r'$\Delta \delta\ [\mathrm{arcsec}]$') # figS.savefig('clumps_first_pass_SingleGalaxy.png') if args.zphot: fig2,ax2=mpl.subplots() for element in zphot_sel: xc,yc=element[:2] ax2.plot(xc,yc,'s',mfc='none',mec='k',markersize=12) for k in range(ngals): gps,nc = detect_all_clumps(FullSet[k+1],np.arange(0.1,0.8,0.1)) Weights = FullSet[k+1]['weight'] X = gps[:,1] Y = gps[:,0] print(X,Y,Weights) ax2.plot(X,Y,'o',mfc='none',mec=colors[k],ms=20,mew=3) # figS.savefig('../ClumpyGalaxies/images/clumps_example_SingleGalaxy.pdf') # figS.savefig('../ClumpyGalaxies/images/clumps_example_SingleGalaxy.png') fig,ax=mpl.subplots(ngals,3,figsize=(20,18)) ax=ax.reshape(np.size(ax)) mpl.subplots_adjust(wspace=0) jetcmap = cm.get_cmap('YlGnBu_r', 10) #generate a jet map with 10 values jet_vals = jetcmap(np.arange(10)) #extract those values as an array jet_vals[0] = [0., 0, 0., 0.] #change the first value # new_jet = mpc.LinearSegmentedColormap.from_list("newjet", jet_vals) for i in range(ngals): axnum=i*3 single_gal_map=gal_selection.copy() single_gal_map[gal_selection!=(i+1)]=0 single_gal_map[gal_selection==(i+1)]=1 ax[axnum+1].imshow(new_image,cmap=CMAP,extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale)) ax[axnum+2].imshow(gal_selection,cmap='viridis',extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale)) nregs=[] nregs2=[] # fractions = [0.2,0.51.0]#np.linspace(0,1,101) for f in fractions: S = get_segmap_level(image_smooth,single_gal_map,f) clump_map_full,nr= mi.sci_nd.label(S) clump_map_clean,nr2 = clean_map(clump_map_full,minarea=5) M,P,Pm,Sc=get_clump_stats(factor*image_stamp,clump_map_clean,zeropoint) nregs.append(nr) nregs2.append(nr2) Xcen,Ycen=mi.barycenter(factor*image_stamp,single_gal_map) ax[axnum+1].set_ylim((Xcen-hsize_new-50)*pixelscale,(Xcen-hsize_new+50)*pixelscale) ax[axnum+1].set_xlim((Ycen-hsize_new-50)*pixelscale,(Ycen-hsize_new+50)*pixelscale) mi.gen_circle(ax[axnum+2],(Ycen-hsize_new)*pixelscale,(Xcen-hsize_new)*pixelscale,0.75,color='cyan',lw=2) # ax[axnum+2].set_ylim((Xcen-hsize_new-50)*pixelscale,(Xcen-hsize_new+50)*pixelscale) # ax[axnum+2].set_xlim((Ycen-hsize_new-50)*pixelscale,(Ycen-hsize_new+50)*pixelscale) ax[axnum].plot(np.array(fractions),nregs,'s-',color='DarkRed',label='All Disconnected') ax[axnum].plot(np.array(fractions),nregs2,'o-',color='Navy',label='A>10pix Disconnected') for f,c in zip([0.2,0.5,1.0],['red','lime','cyan','gold']): S = get_segmap_level(image_smooth,single_gal_map,f) labelmap,nr= mi.sci_nd.label(S) # ax[axnum+1].hlines(pixelscale*f*((new_image.shape[0]-2*sidecut)/2),-2,-1,color=c,lw=3) # ax[axnum+1].text(-1.5,pixelscale*f*((new_image.shape[0]-2*sidecut)/2),r'$f=%.2f$'%f,color=c,fontsize=12,va='bottom',ha='center') ax[axnum].vlines(f,0,nr,color=c,lw=3) mi.draw_border(ax[axnum+1],S,c,extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale)) # NDS = define_structure(3) # ax[axnum].contour(mi.sci_nd.binary_dilation(S,structure=NDS).astype(np.int),levels=[0.5],colors=c,linewidths=3.0,extent=(-hsize_new*pixelscale,hsize_new*pixelscale,-hsize_new*pixelscale,hsize_new*pixelscale)) # for eixo in ax[1:]: # mi.gen_circle(eixo,hsize_new,hsize_new,(2*hsize/args.size)*args.aperture,color='red') # eixo.tick_params(labelleft='off',labelbottom='off') ax[axnum].hlines(1,0,1.1,'k',':') ax[axnum].set_xlim(0,1.1) ax[axnum].set_ylim(0,1.4*max(nregs)) ax[axnum].set_xlabel(r'$f$') ax[axnum].set_ylabel(r'$N_c$') ax[0].legend(loc='best') # fig.savefig('clumps_first_pass.png') fig.canvas.mpl_connect('key_press_event',exit_code) mpl.show() sys.exit() #============================================================================== # END PAPER FIGURE #============================================================================== return FullSet
def find_pairs_and_clumps(image_stamp, redshift, galmag, color, hsize, threshold, fractions, sblimit, pixelscale, zeropoint, ksky=3.0, Areamin=10, Aperture=0.5, no_dilation=True, degrade=None, size=5, safedist=1.0, title=None, plot_results=False, segmap_output=False, erosion=[3], verbose=False, ident=None): if np.amax(image_stamp) == np.amin(image_stamp): if verbose: print("Invalid data values: %.4f,%.4f" % (np.amax(image_stamp), np.amin(image_stamp))) return {} dilate = define_structure(size) sky_med, sky_std = mi.sky_value(image_stamp, ksky) if args.error: factor = -1.0 else: factor = 1.0 if degrade is not None: N, M = image_stamp.shape image_stamp = mi.rebin2d(image_stamp, int(N / degrade), int(M / degrade), flux_scale=True) pixelscale *= degrade if no_dilation: image_smooth = mi.sci_nd.gaussian_filter(image_stamp, sigma=1.0) if np.abs(color) < 10: corrected_thresh = color_correction(threshold, color) new_sblimit = corrected_thresh * sblimit if verbose: print( "Color=%.4f\t old sb limit = %.5f\t new sb limit = %.5f counts/s/arcsec**2" % (color, threshold * sblimit, new_sblimit)) threshold = corrected_thresh elif np.abs(color) > 10: if verbose: print("Invalid color value: %.4f" % color) return {} segmap = mi.gen_segmap_sbthresh(factor * (image_smooth - sky_med), hsize, hsize, sblimit, pixelscale, thresh=threshold, Amin=Areamin, all_detection=True) single_source_map = mi.select_object_map_connected(hsize, hsize, factor * image_smooth, segmap, pixscale=pixelscale, radius=Aperture) image_smooth, single_source_map, imglag, segflag = mi.image_validation( image_smooth, single_source_map, pixelscale, safedist) if no_dilation: dilated_map = single_source_map else: dilated_map = mi.sci_nd.binary_dilation(single_source_map, structure=dilate).astype( np.int32) gal_selection = galaxy_map(image_stamp, segmap, zeropoint, sky_med, factor) ngals = np.amax(gal_selection) FullSet = {} if verbose: print('Ngals=%i' % ngals) for i in range(ngals): single_gal_map = gal_selection.copy() single_gal_map[gal_selection != (i + 1)] = 0 single_gal_map[gal_selection == (i + 1)] = 1 Imap, LM = MID.local_maxims(factor * image_smooth, single_gal_map) Mimap, PMimap, PBimap, Simap = get_clump_stats_imap( factor * image_stamp, Imap, zeropoint) nclumps = len(Mimap) nclumpsbright = np.size(Mimap[Mimap < 28]) Xcen, Ycen = mi.barycenter(factor * image_smooth, single_gal_map) DistsSingle = np.zeros(nclumps) for n in range(nclumps): DistsSingle[n] = pixelscale * np.sqrt((PBimap[n, 0] - Xcen) * (PBimap[n, 0] - Xcen) + (PBimap[n, 1] - Ycen) * (PBimap[n, 1] - Ycen)) if verbose: print('\t %i ----> \t nclumps=%i (m<28: %i)' % (i, nclumps, nclumpsbright)) # nregs=[] # nregs2=[] ## fractions = [0.2,1.0]#np.linspace(0,1,101) # for f in fractions: # S = get_segmap_level(image_smooth,single_gal_map,f) # # clump_map_full,nr= mi.sci_nd.label(S) # clump_map_clean,nr2 = clean_map(clump_map_full,minarea=Areamin) # M,Pb,Pm,Sc=get_clump_stats(image_stamp,clump_map_clean,zeropoint) # GalMags[str(f)]=M # GalPositionsBar[str(f)]=Pb # GalPositionsMax[str(f)]=Pm # GalSizes[str(f)]=Sc # # nregs.append(nr) # nregs2.append(nr2) # # # for f in fractions: # FP = GalPositionsBar[str(f)] # Xcen,Ycen=GalPositionsBar['1.0'][0] # nclumps=np.shape(FP)[0] # # DistsSingle=np.zeros(nclumps) # for n in range(nclumps): # DistsSingle[n] = pixelscale*np.sqrt((FP[n,0]-Xcen)*(FP[n,0]-Xcen)+(FP[n,1]-Ycen)*(FP[n,1]-Ycen)) # # GalDistances[f]=DistsSingle # # if verbose: # print '\t %i ----> f=%.2f \t nclumps=%i'%(i,f,nclumps) if verbose: print(50 * '=') FullSet[i + 1] = {} FullSet[i + 1]['galpos'] = (Xcen, Ycen) FullSet[i + 1]['mags'] = Mimap FullSet[i + 1]['posibar'] = PBimap FullSet[i + 1]['posimax'] = PMimap FullSet[i + 1]['dist'] = DistsSingle FullSet[i + 1]['size'] = Simap ## Real_Sizes = Sizes - SizesPSF if plot_results: print("mag_cat=", galmag) print('sky median = %.5f +- %.6f' % (sky_med, sky_std)) print("sky_threshold = %.8f (sigma = %.8f)" % (sblimit * threshold, threshold)) print("Redshift = %.4f" % redshift) mpl.rcParams['image.cmap'] = 'gist_stern_r' mpl.rcParams['axes.labelsize'] = 12 mpl.rcParams['xtick.labelsize'] = 10 mpl.rcParams['ytick.labelsize'] = 10 # rad,flux,xc,yc,q,theta = compute_sbprofile(image_smooth-sky_med,single_source_map,pixelscale) # radPSF,fluxPSF,xcPSF,ycPSF,qPSF,thetaPSF = compute_sbprofile(psf_image-sky_med,single_source_map_psf,pixelscale) #============================================================================== # PAPER FIGURE #============================================================================== sidecut = 40 import matplotlib.colors as mpc import matplotlib.cm as cm fig, ax = mpl.subplots(2, ngals, figsize=(25, 15)) ax = ax.reshape(np.size(ax)) mpl.subplots_adjust(wspace=0) jetcmap = cm.get_cmap('YlGnBu_r', 10) #generate a jet map with 10 values jet_vals = jetcmap(np.arange(10)) #extract those values as an array jet_vals[0] = [0., 0, 0., 0.] #change the first value new_jet = mpc.LinearSegmentedColormap.from_list("newjet", jet_vals) new_image = (factor * (image_stamp)) hsize_new = new_image.shape[0] / 2 for i in range(ngals): axnum = i single_gal_map = gal_selection.copy() single_gal_map[gal_selection != (i + 1)] = 0 single_gal_map[gal_selection == (i + 1)] = 1 ax[axnum].imshow( new_image, cmap='YlGnBu_r', extent=(-hsize_new * pixelscale, hsize_new * pixelscale, -hsize_new * pixelscale, hsize_new * pixelscale), vmin=0) Imap, LM = MID.local_maxims(factor * image_smooth, single_gal_map) Mimap, PMimap, PBimap, Simap = get_clump_stats_imap( factor * image_stamp, Imap, zeropoint) ax[axnum + ngals].imshow( Imap, cmap='viridis', extent=(-hsize_new * pixelscale, hsize_new * pixelscale, -hsize_new * pixelscale, hsize_new * pixelscale)) for k in range(len(Mimap)): pos = PMimap[k][0] if Mimap[k] < 28: ax[axnum + ngals].plot((pos[1] - hsize_new) * pixelscale, (pos[0] - hsize_new) * pixelscale, 'x', color='white') ax[axnum + ngals].text((pos[1] - hsize_new) * pixelscale, (pos[0] - hsize_new) * pixelscale, '%.3f' % Mimap[k], color='white', fontsize=8, ha='left', va='bottom') Xcen, Ycen = FullSet[i + 1]['galpos'] ax[axnum + ngals].set_ylim((Xcen - hsize_new - 50) * pixelscale, (Xcen - hsize_new + 50) * pixelscale) ax[axnum + ngals].set_xlim((Ycen - hsize_new - 50) * pixelscale, (Ycen - hsize_new + 50) * pixelscale) mi.gen_circle(ax[axnum], (Ycen - hsize_new) * pixelscale, (Xcen - hsize_new) * pixelscale, 0.75, color='white', lw=2) for eixo in ax: eixo.set_xticks([]) eixo.set_yticks([]) # nregs=[] # nregs2=[] ## fractions = [0.2,0.51.0]#np.linspace(0,1,101) # for f in fractions: # S = get_segmap_level(image_smooth,single_gal_map,f) # # clump_map_full,nr= mi.sci_nd.label(S) # clump_map_clean,nr2 = clean_map(clump_map_full,minarea=5) # M,P,Pm,Sc=get_clump_stats(image_stamp,clump_map_clean,zeropoint) # nregs.append(nr) # nregs2.append(nr2) # # for f in fractions: # FP = GalPositionsBar[str(f)] # FPm = GalPositionsMax[str(f)] # # Xcen,Ycen=GalPositionsBar['1.0'][0] # nclumps=np.shape(FP)[0] # # DistsSingle=np.zeros(nclumps) # for n in range(nclumps): # DistsSingle[n] = pixelscale*np.sqrt((FP[n,0]-Xcen)*(FP[n,0]-Xcen)+(FP[n,1]-Ycen)*(FP[n,1]-Ycen)) # # GalDistances[f]=DistsSingle # # ax[axnum].plot(np.array(fractions),nregs,'s-',color='DarkRed',label='All Disconnected') # ax[axnum].plot(np.array(fractions),nregs2,'o-',color='Navy',label='A>10pix Disconnected') # # for f,c in zip([0.2,0.5,1.0],['red','lime','cyan','gold']): # S = get_segmap_level(image_smooth,single_gal_map,f) # labelmap,nr= mi.sci_nd.label(S) # ax[axnum+1].hlines(f*((new_image.shape[0]-2*sidecut)/2),5,15,color=c,lw=3) # ax[axnum+1].text(10,f*((new_image.shape[0]-2*sidecut)/2),r'$f=%.2f$'%f,color=c,fontsize=12,va='bottom',ha='center') # ax[axnum].vlines(f,0,nr,color=c,lw=3) # mi.draw_border(ax[axnum+1],S,c) # ## for eixo in ax[1:]: ## mi.gen_circle(eixo,hsize_new,hsize_new,(2*hsize/args.size)*args.aperture,color='red') ## eixo.tick_params(labelleft='off',labelbottom='off') # # ax[axnum].hlines(1,0,1.1,'k',':') # ax[axnum].set_xlim(0,1.1) # ax[axnum].set_ylim(0,1.4*max(nregs)) # ax[axnum].set_xlabel(r'$f$') # ax[axnum].set_ylabel(r'$N_c$') # ax[0].legend(loc='best') # fig.savefig('clumps_first_pass_INTESNITY.png') fig.canvas.mpl_connect('key_press_event', exit_code) mpl.show() sys.exit() #============================================================================== # END PAPER FIGURE #============================================================================== return FullSet