コード例 #1
0
ファイル: mod_lbfgs.py プロジェクト: zhuligs/cctbx_project
 def compute_functional_and_gradients(self):
     lp_h = lbfgs_partiality_handler()
     #calculate sum_sqr of the function
     fvec = lp_h.func(self.x, self.args)
     self.f = flex.sum(fvec * fvec)
     #calculate gradient for each parameter
     DELTA = 1.E-7
     self.g = flex.double()
     for x in xrange(self.n):
         templist = list(self.x)
         templist[x] += DELTA
         dvalues = flex.double(templist)
         dfvec = lp_h.func(dvalues, self.args)
         df = flex.sum(dfvec * dfvec)
         #calculate by finite_difference
         self.g.append((df - self.f) / DELTA)
     return self.f, self.g
コード例 #2
0
ファイル: mod_leastsqr.py プロジェクト: zhuligs/cctbx_project
 def optimize(self, I_r_flex, observations_original, wavelength,
              crystal_init_orientation, alpha_angle, spot_pred_x_mm,
              spot_pred_y_mm, iparams, pres_in, observations_non_polar,
              detector_distance_mm):
     ph = partiality_handler()
     lph = lbfgs_partiality_handler()
     if iparams.postref.allparams.flag_on:
         refine_steps = ['allparams']
     else:
         refine_steps = ['crystal_orientation']
         if iparams.postref.reflecting_range.flag_on:
             refine_steps.append('reflecting_range')
         if iparams.postref.unit_cell.flag_on:
             refine_steps.append('unit_cell')
     #get miller array iso, if given.
     miller_array_iso = None
     #prepare data
     pr_d_min = iparams.postref.allparams.d_min
     pr_d_max = iparams.postref.allparams.d_max
     pr_sigma_min = iparams.postref.allparams.sigma_min
     pr_partiality_min = iparams.postref.allparams.partiality_min
     pr_uc_tol = iparams.postref.allparams.uc_tolerance
     cs = observations_original.crystal_symmetry().space_group(
     ).crystal_system()
     #filter by resolution
     observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
           spot_pred_y_mm_sel, I_ref_sel = self.get_filtered_data(\
             'resolution', [pr_d_min, pr_d_max], observations_original, alpha_angle,
             spot_pred_x_mm, spot_pred_y_mm, I_r_flex)
     #filter by sigma
     observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
               spot_pred_y_mm_sel, I_ref_sel = self.get_filtered_data(\
                 'sigma', [pr_sigma_min], observations_original_sel, alpha_angle_sel,
                 spot_pred_x_mm_sel, spot_pred_y_mm_sel, I_ref_sel)
     #initialize values only in the first sub cycle and the first refine step.
     spot_radius = ph.calc_spot_radius(
         sqr(crystal_init_orientation.reciprocal_matrix()),
         observations_original_sel.indices(), wavelength)
     if pres_in is None:
         ry, rz, r0, re, voigt_nu, rotx, roty = 0, 0, spot_radius, iparams.gamma_e, iparams.voigt_nu, 0.0, 0.0
         #apply constrain on the unit cell using crystal system
         uc_scale_inp = lph.prep_input(
             observations_original.unit_cell().parameters(), cs)
         uc_scale_constrained = lph.prep_output(uc_scale_inp, cs)
         a, b, c, alpha, beta, gamma = uc_scale_constrained
         const_params_scale = (rotx, roty, ry, rz, r0, re, voigt_nu, a, b,
                               c, alpha, beta, gamma)
         xopt_scalefactors, stats = self.optimize_scalefactors(
             I_r_flex, observations_original, wavelength,
             crystal_init_orientation, alpha_angle, spot_pred_x_mm,
             spot_pred_y_mm, iparams, pres_in, observations_non_polar,
             detector_distance_mm, const_params_scale)
         G, B = xopt_scalefactors
     else:
         G, B, ry, rz, r0, re, voigt_nu, rotx, roty = pres_in.G, pres_in.B, pres_in.ry, pres_in.rz, pres_in.r0, pres_in.re, pres_in.voigt_nu, 0.0, 0.0
         a, b, c, alpha, beta, gamma = pres_in.unit_cell.parameters()
         crystal_init_orientation = pres_in.crystal_orientation
     #filter by partiality
     two_theta = observations_original_sel.two_theta(
         wavelength=wavelength).data()
     uc = unit_cell((a, b, c, alpha, beta, gamma))
     partiality_init, delta_xy_init, rs_init, dummy = ph.calc_partiality_anisotropy_set(
         uc, rotx, roty, observations_original_sel.indices(), ry, rz, r0,
         re, voigt_nu, two_theta, alpha_angle_sel, wavelength,
         crystal_init_orientation, spot_pred_x_mm_sel, spot_pred_y_mm_sel,
         detector_distance_mm, iparams.partiality_model,
         iparams.flag_beam_divergence)
     observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
               spot_pred_y_mm_sel, I_ref_sel = self.get_filtered_data(\
                 'partiality', [pr_partiality_min], observations_original_sel,
                 alpha_angle_sel, spot_pred_x_mm_sel, spot_pred_y_mm_sel, I_ref_sel,
                 partiality_in=partiality_init)
     I_r_true = I_ref_sel[:]
     I_o_true = observations_original_sel.data()[:]
     #calculate initial residual_xy error
     const_params_uc = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu)
     xinp_uc = lph.prep_input((a, b, c, alpha, beta, gamma), cs)
     args_uc = (I_r_true, observations_original_sel, wavelength,
                alpha_angle_sel, crystal_init_orientation,
                spot_pred_x_mm_sel, spot_pred_y_mm_sel,
                detector_distance_mm, 'unit_cell', const_params_uc, B,
                miller_array_iso, iparams)
     uc_params_err = lph.func(xinp_uc, args_uc)
     init_residual_xy_err = flex.sum(uc_params_err**2)
     #calculate initial residual_pr error
     const_params_all = (G, B)
     xinp_all = flex.double([rotx, roty, ry, rz, r0, re, voigt_nu])
     xinp_all.extend(lph.prep_input((a, b, c, alpha, beta, gamma), cs))
     args_all = (I_r_true, observations_original_sel, wavelength,
                 alpha_angle_sel, crystal_init_orientation,
                 spot_pred_x_mm_sel, spot_pred_y_mm_sel,
                 detector_distance_mm, 'allparams', const_params_all, B,
                 miller_array_iso, iparams)
     all_params_err = lph.func(xinp_all, args_all)
     init_residual_err = flex.sum(all_params_err**2)
     #keep in list
     t_pr_list = [init_residual_err]
     t_xy_list = [init_residual_xy_err]
     refined_params_hist = [(G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a,
                             b, c, alpha, beta, gamma)]
     txt_out = ''
     for i_sub_cycle in range(iparams.n_postref_sub_cycle):
         for j_refine_step in range(len(refine_steps)):
             refine_mode = refine_steps[j_refine_step]
             #prepare data
             init_params = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a,
                            b, c, alpha, beta, gamma)
             observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
                   spot_pred_y_mm_sel, I_ref_sel = self.prepare_data_microcycle(refine_mode, iparams,
                             observations_original, alpha_angle,
                             spot_pred_x_mm, spot_pred_y_mm,
                             I_r_flex, init_params, crystal_init_orientation,
                             wavelength, detector_distance_mm)
             I_r_true = I_ref_sel[:]
             I_o_true = observations_original_sel.data()
             if refine_mode == 'crystal_orientation':
                 xinp = flex.double([rotx, roty])
                 const_params = (G, B, ry, rz, r0, re, voigt_nu, a, b, c,
                                 alpha, beta, gamma)
             elif refine_mode == 'reflecting_range':
                 xinp = flex.double([ry, rz, r0, re, voigt_nu])
                 const_params = (G, B, rotx, roty, a, b, c, alpha, beta,
                                 gamma)
             elif refine_mode == 'unit_cell':
                 xinp = lph.prep_input((a, b, c, alpha, beta, gamma), cs)
                 const_params = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu)
             elif refine_mode == 'allparams':
                 xinp = flex.double([rotx, roty, ry, rz, r0, re, voigt_nu])
                 xinp.extend(
                     lph.prep_input((a, b, c, alpha, beta, gamma), cs))
                 const_params = (G, B)
             args = (I_r_true, observations_original_sel, wavelength,
                     alpha_angle_sel, crystal_init_orientation,
                     spot_pred_x_mm_sel, spot_pred_y_mm_sel,
                     detector_distance_mm, refine_mode, const_params, B,
                     miller_array_iso, iparams)
             lh = lbfgs_handler(current_x=xinp, args=args)
             xopt = flex.double(list(lh.x))
             if refine_mode == 'crystal_orientation' or \
                 refine_mode == 'reflecting_range' or refine_mode == 'allparams':
                 current_residual_err = lh.f
                 #calculate residual_xy_error (for refine_mode = SF, CO, RR, and all params)
                 xinp_uc = lph.prep_input((a, b, c, alpha, beta, gamma), cs)
                 if refine_mode == 'crystal_orientation':
                     rotx, roty = xopt
                 elif refine_mode == 'reflecting_range':
                     ry, rz, r0, re, voigt_nu = xopt
                 elif refine_mode == 'allparams':
                     rotx, roty, ry, rz, r0, re, voigt_nu = xopt[:7]
                     xinp_uc = xopt[7:]
                     a, b, c, alpha, beta, gamma = lph.prep_output(
                         xinp_uc, cs)
                 const_params_uc = (G, B, rotx, roty, ry, rz, r0, re,
                                    voigt_nu)
                 xinp_uc = lph.prep_input((a, b, c, alpha, beta, gamma), cs)
                 args_uc = (I_r_true, observations_original_sel, wavelength,
                            alpha_angle_sel, crystal_init_orientation,
                            spot_pred_x_mm_sel, spot_pred_y_mm_sel,
                            detector_distance_mm, 'unit_cell',
                            const_params_uc, B, miller_array_iso, iparams)
                 uc_params_err = lph.func(xinp_uc, args_uc)
                 current_residual_xy_err = flex.sum(uc_params_err**2)
             elif refine_mode == 'unit_cell':
                 current_residual_xy_err = lh.f
                 xopt_uc = lph.prep_output(xopt, cs)
                 a, b, c, alpha, beta, gamma = xopt_uc
                 #check the unit-cell with the reference intensity
                 xinp = flex.double([rotx, roty, ry, rz, r0, re, voigt_nu])
                 xinp.extend(
                     lph.prep_input((a, b, c, alpha, beta, gamma), cs))
                 const_params_all = (G, B)
                 args_all = (I_r_true, observations_original_sel,
                             wavelength, alpha_angle_sel,
                             crystal_init_orientation, spot_pred_x_mm_sel,
                             spot_pred_y_mm_sel, detector_distance_mm,
                             'allparams', const_params_all, B,
                             miller_array_iso, iparams)
                 all_params_err = lph.func(xinp_all, args_all)
                 current_residual_err = flex.sum(all_params_err**2)
             flag_success = False
             if refine_mode == 'allparams':
                 #if allparams refinement, only check the post-refine target function
                 if current_residual_err < (t_pr_list[len(t_pr_list)-1] + \
                     (t_pr_list[len(t_pr_list)-1]*iparams.postref.residual_threshold/100)):
                     t_pr_list.append(current_residual_err)
                     t_xy_list.append(current_residual_xy_err)
                     refined_params_hist.append(
                         (G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b,
                          c, alpha, beta, gamma))
                     flag_success = True
             else:
                 if current_residual_err < (t_pr_list[len(t_pr_list)-1] + \
                       (t_pr_list[len(t_pr_list)-1]*iparams.postref.residual_threshold/100)):
                     if current_residual_xy_err < (t_xy_list[len(t_xy_list)-1] + \
                         (t_xy_list[len(t_xy_list)-1]*iparams.postref.residual_threshold_xy/100)):
                         t_pr_list.append(current_residual_err)
                         t_xy_list.append(current_residual_xy_err)
                         refined_params_hist.append(
                             (G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a,
                              b, c, alpha, beta, gamma))
                         flag_success = True
             if flag_success is False:
                 G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma = refined_params_hist[
                     len(refined_params_hist) - 1]
             tmp_txt_out = refine_mode + ' %3.0f %6.4f %6.4f %6.4f %6.4f %10.8f %10.8f %10.8f %10.8f %10.8f %6.3f %6.3f %.4g %6.3f\n' % (
                 i_sub_cycle, G, B, rotx * 180 / math.pi, roty * 180 /
                 math.pi, ry, rz, r0, re, voigt_nu, a, c, t_pr_list[
                     len(t_pr_list) - 1], t_xy_list[len(t_pr_list) - 1])
             txt_out += tmp_txt_out
     #apply the refined parameters on the full (original) reflection set
     two_theta = observations_original.two_theta(
         wavelength=wavelength).data()
     sin_theta_over_lambda_sq = observations_original.two_theta(
         wavelength=wavelength).sin_theta_over_lambda_sq().data()
     if pres_in is None:
         partiality_init, delta_xy_init, rs_init, rh_init = ph.calc_partiality_anisotropy_set(\
             observations_original.unit_cell(),0.0, 0.0,observations_original.indices(),
             0, 0, spot_radius, iparams.gamma_e, iparams.voigt_nu,
             two_theta, alpha_angle, wavelength,
             crystal_init_orientation,spot_pred_x_mm, spot_pred_y_mm,detector_distance_mm,
             iparams.partiality_model,iparams.flag_beam_divergence)
         I_o_init = ph.calc_full_refl(observations_original.data(),
                                      sin_theta_over_lambda_sq, 1, 0,
                                      partiality_init, rs_init)
     else:
         partiality_init, delta_xy_init, rs_init, rh_init = ph.calc_partiality_anisotropy_set(\
             pres_in.unit_cell,0.0, 0.0,observations_original.indices(),
             pres_in.ry, pres_in.rz,pres_in.r0, pres_in.re, pres_in.voigt_nu,
             two_theta, alpha_angle, wavelength,
             crystal_init_orientation,spot_pred_x_mm, spot_pred_y_mm,detector_distance_mm,
             iparams.partiality_model,iparams.flag_beam_divergence)
         I_o_init = ph.calc_full_refl(observations_original.data(),
                                      sin_theta_over_lambda_sq, pres_in.G,
                                      pres_in.B, partiality_init, rs_init)
     partiality_fin, delta_xy_fin, rs_fin, rh_fin = ph.calc_partiality_anisotropy_set(\
         unit_cell((a,b,c,alpha,beta,gamma)),rotx, roty,observations_original.indices(),
         ry, rz, r0, re, voigt_nu, two_theta, alpha_angle, wavelength,crystal_init_orientation,
         spot_pred_x_mm, spot_pred_y_mm,detector_distance_mm,
         iparams.partiality_model,iparams.flag_beam_divergence)
     I_o_fin = ph.calc_full_refl(observations_original.data(),
                                 sin_theta_over_lambda_sq, G, B,
                                 partiality_fin, rs_fin)
     SE_of_the_estimate = standard_error_of_the_estimate(
         I_r_flex, I_o_fin, 13)
     R_sq = coefficient_of_determination(I_r_flex, I_o_fin) * 100
     CC_init = flex.linear_correlation(I_r_flex, I_o_init).coefficient()
     CC_final = flex.linear_correlation(I_r_flex, I_o_fin).coefficient()
     err_init = (I_r_flex - I_o_init) / observations_original.sigmas()
     R_init = math.sqrt(flex.sum(err_init**2))
     err_final = (I_r_flex - I_o_fin) / observations_original.sigmas()
     R_final = math.sqrt(flex.sum(err_final**2))
     R_xy_init = math.sqrt(flex.sum(delta_xy_init**2))
     R_xy_final = math.sqrt(flex.sum(delta_xy_fin**2))
     if R_init < R_final or re > (iparams.gamma_e * 3):
         CC_final = CC_init
         R_final = R_init
         R_xy_final = R_xy_init
         if pres_in is None:
             G, B, r0, ry, rz, re, rotx, roty = (1.0, 0.0, spot_radius, 0.0,
                                                 0.0, iparams.gamma_e, 0.0,
                                                 0.0)
             a, b, c, alpha, beta, gamma = observations_original.unit_cell(
             ).parameters()
         else:
             G, B, r0, ry, rz, re, rotx, roty = (pres_in.G, pres_in.B,
                                                 pres_in.r0, pres_in.ry,
                                                 pres_in.rz, pres_in.re,
                                                 0.0, 0.0)
             a, b, c, alpha, beta, gamma = pres_in.unit_cell.parameters()
             crystal_init_orientation = pres_in.crystal_orientation
     #calculate CCiso if hklisoin is given
     CC_iso_init, CC_iso_final = (0, 0)
     if iparams.hklisoin is not None:
         if miller_array_iso is not None:
             from cctbx import miller
             matches = miller.match_multi_indices(
                 miller_indices_unique=miller_array_iso.indices(),
                 miller_indices=observations_non_polar.indices())
             I_iso_match = flex.double([
                 miller_array_iso.data()[pair[0]]
                 for pair in matches.pairs()
             ])
             I_o_init_match = flex.double(
                 [I_o_init[pair[1]] for pair in matches.pairs()])
             I_o_fin_match = flex.double(
                 [I_o_fin[pair[1]] for pair in matches.pairs()])
             CC_iso_init = flex.linear_correlation(
                 I_iso_match, I_o_init_match).coefficient()
             CC_iso_final = flex.linear_correlation(
                 I_iso_match, I_o_fin_match).coefficient()
     xopt = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha,
             beta, gamma)
     return xopt, (SE_of_the_estimate, R_sq, CC_init, CC_final, R_init,
                   R_final, R_xy_init, R_xy_final, CC_iso_init,
                   CC_iso_final), len(I_ref_sel)
コード例 #3
0
 def optimize(self, I_r_flex, observations_original,
             wavelength, crystal_init_orientation,
             alpha_angle, spot_pred_x_mm, spot_pred_y_mm, iparams,
             pres_in, observations_non_polar, detector_distance_mm):
   ph = partiality_handler()
   lph = lbfgs_partiality_handler()
   if iparams.postref.allparams.flag_on:
     refine_steps = ['allparams']
   else:
     refine_steps = ['crystal_orientation']
     if iparams.postref.reflecting_range.flag_on:
       refine_steps.append('reflecting_range')
     if iparams.postref.unit_cell.flag_on:
       refine_steps.append('unit_cell')
   #get miller array iso, if given.
   miller_array_iso = None
   #prepare data
   pr_d_min = iparams.postref.allparams.d_min
   pr_d_max = iparams.postref.allparams.d_max
   pr_sigma_min = iparams.postref.allparams.sigma_min
   pr_partiality_min = iparams.postref.allparams.partiality_min
   pr_uc_tol = iparams.postref.allparams.uc_tolerance
   cs = observations_original.crystal_symmetry().space_group().crystal_system()
   #filter by resolution
   observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
         spot_pred_y_mm_sel, I_ref_sel = self.get_filtered_data(\
           'resolution', [pr_d_min, pr_d_max], observations_original, alpha_angle,
           spot_pred_x_mm, spot_pred_y_mm, I_r_flex)
   #filter by sigma
   observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
             spot_pred_y_mm_sel, I_ref_sel = self.get_filtered_data(\
               'sigma', [pr_sigma_min], observations_original_sel, alpha_angle_sel,
               spot_pred_x_mm_sel, spot_pred_y_mm_sel, I_ref_sel)
   #initialize values only in the first sub cycle and the first refine step.
   spot_radius = ph.calc_spot_radius(sqr(crystal_init_orientation.reciprocal_matrix()),
                                                    observations_original_sel.indices(), wavelength)
   if pres_in is None:
     ry, rz, r0, re, voigt_nu, rotx, roty = 0, 0, spot_radius, iparams.gamma_e, iparams.voigt_nu, 0.0, 0.0
     #apply constrain on the unit cell using crystal system
     uc_scale_inp = lph.prep_input(observations_original.unit_cell().parameters(), cs)
     uc_scale_constrained = lph.prep_output(uc_scale_inp, cs)
     a,b,c,alpha,beta,gamma = uc_scale_constrained
     const_params_scale = (rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma)
     xopt_scalefactors, stats = self.optimize_scalefactors(I_r_flex,
                                                           observations_original,
                                                           wavelength, crystal_init_orientation,
                                                           alpha_angle,
                                                           spot_pred_x_mm,
                                                           spot_pred_y_mm,
                                                           iparams,
                                                           pres_in,
                                                           observations_non_polar,
                                                           detector_distance_mm,
                                                           const_params_scale)
     G, B = xopt_scalefactors
   else:
     G, B, ry, rz, r0, re, voigt_nu, rotx, roty = pres_in.G, pres_in.B, pres_in.ry, pres_in.rz, pres_in.r0, pres_in.re, pres_in.voigt_nu, 0.0 , 0.0
     a,b,c,alpha,beta,gamma = pres_in.unit_cell.parameters()
     crystal_init_orientation = pres_in.crystal_orientation
   #filter by partiality
   two_theta = observations_original_sel.two_theta(wavelength=wavelength).data()
   uc = unit_cell((a,b,c,alpha,beta,gamma))
   partiality_init, delta_xy_init, rs_init, dummy = ph.calc_partiality_anisotropy_set(uc, rotx, roty,
                                                                   observations_original_sel.indices(),
                                                                   ry, rz, r0, re, voigt_nu, two_theta,
                                                                   alpha_angle_sel, wavelength,
                                                                   crystal_init_orientation,
                                                                   spot_pred_x_mm_sel,
                                                                   spot_pred_y_mm_sel,
                                                                   detector_distance_mm,
                                                                   iparams.partiality_model,
                                                                   iparams.flag_beam_divergence)
   observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
             spot_pred_y_mm_sel, I_ref_sel = self.get_filtered_data(\
               'partiality', [pr_partiality_min], observations_original_sel,
               alpha_angle_sel, spot_pred_x_mm_sel, spot_pred_y_mm_sel, I_ref_sel,
               partiality_in=partiality_init)
   I_r_true = I_ref_sel[:]
   I_o_true = observations_original_sel.data()[:]
   #calculate initial residual_xy error
   const_params_uc = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu)
   xinp_uc = lph.prep_input((a,b,c,alpha,beta,gamma), cs)
   args_uc = (I_r_true, observations_original_sel, wavelength, alpha_angle_sel,
           crystal_init_orientation, spot_pred_x_mm_sel, spot_pred_y_mm_sel,
           detector_distance_mm, 'unit_cell', const_params_uc, B, miller_array_iso, iparams)
   uc_params_err = lph.func(xinp_uc, args_uc)
   init_residual_xy_err = flex.sum(uc_params_err**2)
   #calculate initial residual_pr error
   const_params_all= (G,B)
   xinp_all = flex.double([rotx, roty, ry, rz, r0, re, voigt_nu])
   xinp_all.extend(lph.prep_input((a,b,c,alpha,beta,gamma), cs))
   args_all = (I_r_true, observations_original_sel, wavelength, alpha_angle_sel,
           crystal_init_orientation, spot_pred_x_mm_sel, spot_pred_y_mm_sel,
           detector_distance_mm, 'allparams', const_params_all, B, miller_array_iso, iparams)
   all_params_err = lph.func(xinp_all, args_all)
   init_residual_err = flex.sum(all_params_err**2)
   #keep in list
   t_pr_list = [init_residual_err]
   t_xy_list = [init_residual_xy_err]
   refined_params_hist = [(G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma)]
   txt_out = ''
   for i_sub_cycle in range(iparams.n_postref_sub_cycle):
     for j_refine_step in range(len(refine_steps)):
       refine_mode = refine_steps[j_refine_step]
       #prepare data
       init_params = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma)
       observations_original_sel, alpha_angle_sel, spot_pred_x_mm_sel, \
             spot_pred_y_mm_sel, I_ref_sel = self.prepare_data_microcycle(refine_mode, iparams,
                       observations_original, alpha_angle,
                       spot_pred_x_mm, spot_pred_y_mm,
                       I_r_flex, init_params, crystal_init_orientation,
                       wavelength, detector_distance_mm)
       I_r_true = I_ref_sel[:]
       I_o_true = observations_original_sel.data()
       if refine_mode == 'crystal_orientation':
         xinp = flex.double([rotx, roty])
         const_params = (G, B, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma)
       elif refine_mode == 'reflecting_range':
         xinp = flex.double([ry, rz, r0, re, voigt_nu])
         const_params = (G, B, rotx, roty, a, b, c, alpha, beta, gamma)
       elif refine_mode == 'unit_cell':
         xinp = lph.prep_input((a,b,c,alpha,beta,gamma), cs)
         const_params = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu)
       elif refine_mode == 'allparams':
         xinp = flex.double([rotx, roty, ry, rz, r0, re, voigt_nu])
         xinp.extend(lph.prep_input((a,b,c,alpha,beta,gamma), cs))
         const_params = (G,B)
       args=(I_r_true, observations_original_sel, wavelength, alpha_angle_sel,
             crystal_init_orientation, spot_pred_x_mm_sel, spot_pred_y_mm_sel,
             detector_distance_mm, refine_mode, const_params, B, miller_array_iso, iparams)
       lh = lbfgs_handler(current_x=xinp, args=args)
       xopt = flex.double(list(lh.x))
       if refine_mode == 'crystal_orientation' or \
           refine_mode == 'reflecting_range' or refine_mode == 'allparams':
         current_residual_err = lh.f
         #calculate residual_xy_error (for refine_mode = SF, CO, RR, and all params)
         xinp_uc = lph.prep_input((a,b,c,alpha,beta,gamma), cs)
         if refine_mode == 'crystal_orientation':
           rotx, roty = xopt
         elif refine_mode == 'reflecting_range':
           ry, rz, r0, re, voigt_nu = xopt
         elif refine_mode == 'allparams':
           rotx, roty, ry, rz, r0, re, voigt_nu = xopt[:7]
           xinp_uc = xopt[7:]
           a, b, c, alpha, beta, gamma = lph.prep_output(xinp_uc, cs)
         const_params_uc = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu)
         xinp_uc = lph.prep_input((a,b,c,alpha,beta,gamma), cs)
         args_uc = (I_r_true, observations_original_sel, wavelength, alpha_angle_sel,
                 crystal_init_orientation, spot_pred_x_mm_sel, spot_pred_y_mm_sel,
                 detector_distance_mm, 'unit_cell', const_params_uc, B, miller_array_iso, iparams)
         uc_params_err = lph.func(xinp_uc, args_uc)
         current_residual_xy_err = flex.sum(uc_params_err**2)
       elif refine_mode == 'unit_cell':
         current_residual_xy_err = lh.f
         xopt_uc = lph.prep_output(xopt, cs)
         a, b, c, alpha, beta, gamma = xopt_uc
         #check the unit-cell with the reference intensity
         xinp = flex.double([rotx, roty, ry, rz, r0, re, voigt_nu])
         xinp.extend(lph.prep_input((a, b, c, alpha, beta, gamma), cs))
         const_params_all = (G,B)
         args_all = (I_r_true, observations_original_sel, wavelength, alpha_angle_sel,
           crystal_init_orientation, spot_pred_x_mm_sel, spot_pred_y_mm_sel,
           detector_distance_mm, 'allparams', const_params_all, B, miller_array_iso, iparams)
         all_params_err = lph.func(xinp_all, args_all)
         current_residual_err = flex.sum(all_params_err**2)
       flag_success = False
       if refine_mode == 'allparams':
         #if allparams refinement, only check the post-refine target function
         if current_residual_err < (t_pr_list[len(t_pr_list)-1] + \
             (t_pr_list[len(t_pr_list)-1]*iparams.postref.residual_threshold/100)):
           t_pr_list.append(current_residual_err)
           t_xy_list.append(current_residual_xy_err)
           refined_params_hist.append((G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma))
           flag_success = True
       else:
         if current_residual_err < (t_pr_list[len(t_pr_list)-1] + \
               (t_pr_list[len(t_pr_list)-1]*iparams.postref.residual_threshold/100)):
           if current_residual_xy_err < (t_xy_list[len(t_xy_list)-1] + \
               (t_xy_list[len(t_xy_list)-1]*iparams.postref.residual_threshold_xy/100)):
             t_pr_list.append(current_residual_err)
             t_xy_list.append(current_residual_xy_err)
             refined_params_hist.append((G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a, b, c, alpha, beta, gamma))
             flag_success = True
       if flag_success is False:
         G,B,rotx,roty,ry,rz,r0,re,voigt_nu,a,b,c,alpha,beta,gamma = refined_params_hist[len(refined_params_hist)-1]
       tmp_txt_out = refine_mode + ' %3.0f %6.4f %6.4f %6.4f %6.4f %10.8f %10.8f %10.8f %10.8f %10.8f %6.3f %6.3f %.4g %6.3f\n'%(i_sub_cycle,G,B,rotx*180/math.pi,roty*180/math.pi,ry,rz,r0,re,voigt_nu,a,c,t_pr_list[len(t_pr_list)-1],t_xy_list[len(t_pr_list)-1])
       txt_out += tmp_txt_out
   #apply the refined parameters on the full (original) reflection set
   two_theta = observations_original.two_theta(wavelength=wavelength).data()
   sin_theta_over_lambda_sq = observations_original.two_theta(wavelength=wavelength).sin_theta_over_lambda_sq().data()
   if pres_in is None:
     partiality_init, delta_xy_init, rs_init, rh_init = ph.calc_partiality_anisotropy_set(\
         observations_original.unit_cell(),0.0, 0.0,observations_original.indices(),
         0, 0, spot_radius, iparams.gamma_e, iparams.voigt_nu,
         two_theta, alpha_angle, wavelength,
         crystal_init_orientation,spot_pred_x_mm, spot_pred_y_mm,detector_distance_mm,
         iparams.partiality_model,iparams.flag_beam_divergence)
     I_o_init = ph.calc_full_refl(observations_original.data(), sin_theta_over_lambda_sq,
                               1, 0, partiality_init, rs_init)
   else:
     partiality_init, delta_xy_init, rs_init, rh_init = ph.calc_partiality_anisotropy_set(\
         pres_in.unit_cell,0.0, 0.0,observations_original.indices(),
         pres_in.ry, pres_in.rz,pres_in.r0, pres_in.re, pres_in.voigt_nu,
         two_theta, alpha_angle, wavelength,
         crystal_init_orientation,spot_pred_x_mm, spot_pred_y_mm,detector_distance_mm,
         iparams.partiality_model,iparams.flag_beam_divergence)
     I_o_init = ph.calc_full_refl(observations_original.data(), sin_theta_over_lambda_sq,
                             pres_in.G, pres_in.B, partiality_init, rs_init)
   partiality_fin, delta_xy_fin, rs_fin, rh_fin = ph.calc_partiality_anisotropy_set(\
       unit_cell((a,b,c,alpha,beta,gamma)),rotx, roty,observations_original.indices(),
       ry, rz, r0, re, voigt_nu, two_theta, alpha_angle, wavelength,crystal_init_orientation,
       spot_pred_x_mm, spot_pred_y_mm,detector_distance_mm,
       iparams.partiality_model,iparams.flag_beam_divergence)
   I_o_fin = ph.calc_full_refl(observations_original.data(), sin_theta_over_lambda_sq,
                             G, B, partiality_fin, rs_fin)
   SE_of_the_estimate = standard_error_of_the_estimate(I_r_flex,I_o_fin, 13)
   R_sq = coefficient_of_determination(I_r_flex,I_o_fin)*100
   CC_init = flex.linear_correlation(I_r_flex, I_o_init).coefficient()
   CC_final = flex.linear_correlation(I_r_flex, I_o_fin).coefficient()
   err_init = (I_r_flex - I_o_init)/observations_original.sigmas()
   R_init = math.sqrt(flex.sum(err_init**2))
   err_final = (I_r_flex - I_o_fin)/observations_original.sigmas()
   R_final = math.sqrt(flex.sum(err_final**2))
   R_xy_init = math.sqrt(flex.sum(delta_xy_init**2))
   R_xy_final = math.sqrt(flex.sum(delta_xy_fin**2))
   if R_init < R_final or re > (iparams.gamma_e * 10):
     CC_final = CC_init
     R_final = R_init
     R_xy_final = R_xy_init
     if pres_in is None:
       G,B,r0,ry,rz,re,rotx,roty = (1.0,0.0,spot_radius,0.0,0.0,iparams.gamma_e,0.0,0.0)
       a,b,c,alpha,beta,gamma = observations_original.unit_cell().parameters()
     else:
       G,B,r0,ry,rz,re,rotx,roty = (pres_in.G,pres_in.B,pres_in.r0,pres_in.ry,pres_in.rz,pres_in.re,0.0,0.0)
       a,b,c,alpha,beta,gamma = pres_in.unit_cell.parameters()
       crystal_init_orientation = pres_in.crystal_orientation
   #calculate CCiso if hklisoin is given
   CC_iso_init,CC_iso_final = (0,0)
   if iparams.hklisoin is not None:
     if miller_array_iso is not None:
       from cctbx import miller
       matches = miller.match_multi_indices(
                         miller_indices_unique=miller_array_iso.indices(),
                         miller_indices=observations_non_polar.indices())
       I_iso_match = flex.double([miller_array_iso.data()[pair[0]] for pair in matches.pairs()])
       I_o_init_match = flex.double([I_o_init[pair[1]] for pair in matches.pairs()])
       I_o_fin_match = flex.double([I_o_fin[pair[1]] for pair in matches.pairs()])
       CC_iso_init = flex.linear_correlation(I_iso_match, I_o_init_match).coefficient()
       CC_iso_final = flex.linear_correlation(I_iso_match, I_o_fin_match).coefficient()
   xopt = (G, B, rotx, roty, ry, rz, r0, re, voigt_nu, a,b,c,alpha,beta,gamma)
   return xopt, (SE_of_the_estimate, R_sq, CC_init, CC_final, R_init, R_final, R_xy_init, R_xy_final, CC_iso_init, CC_iso_final), len(I_ref_sel)
コード例 #4
0
 def organize_input(self,
                    observations_pickle,
                    iparams,
                    avg_mode,
                    pickle_filename=None):
     """Given the pickle file, extract and prepare observations object and
 the alpha angle (meridional to equatorial).
 """
     #get general parameters
     if iparams.isoform_name is not None:
         if "identified_isoform" not in observations_pickle:
             return None, "No identified isoform"
         if observations_pickle[
                 "identified_isoform"] != iparams.isoform_name:
             return None, "Identified isoform(%s) is not the requested isoform (%s)" % (
                 observations_pickle["identified_isoform"],
                 iparams.isoform_name)
     if iparams.flag_weak_anomalous:
         if avg_mode == 'final':
             target_anomalous_flag = iparams.target_anomalous_flag
         else:
             target_anomalous_flag = False
     else:
         target_anomalous_flag = iparams.target_anomalous_flag
     img_filename_only = ''
     if pickle_filename:
         img_filename_only = os.path.basename(pickle_filename)
     txt_exception = ' {0:40} ==> '.format(img_filename_only)
     #for dials integration pickles - also look for experimentxxx.json
     if "miller_index" in observations_pickle:
         from dxtbx.model.experiment_list import ExperimentListFactory
         exp_json_file = os.path.join(
             os.path.dirname(pickle_filename),
             img_filename_only.split('_')[0] + '_refined_experiments.json')
         if os.path.isfile(exp_json_file):
             experiments = ExperimentListFactory.from_json_file(
                 exp_json_file)
             dials_crystal = experiments[0].crystal
             detector = experiments[0].detector
             beam = experiments[0].beam
             crystal_symmetry = crystal.symmetry(
                 unit_cell=dials_crystal.get_unit_cell().parameters(),
                 space_group_symbol=iparams.target_space_group)
             miller_set_all = miller.set(
                 crystal_symmetry=crystal_symmetry,
                 indices=observations_pickle['miller_index'],
                 anomalous_flag=target_anomalous_flag)
             observations = miller_set_all.array(
                 data=observations_pickle['intensity.sum.value'],
                 sigmas=flex.sqrt(
                     observations_pickle['intensity.sum.variance'])
             ).set_observation_type_xray_intensity()
             detector_distance_mm = detector[0].get_distance()
             alpha_angle_obs = flex.double([0] * len(observations.data()))
             wavelength = beam.get_wavelength()
             spot_pred_x_mm = observations_pickle['s1']  #a disguise of s1
             spot_pred_y_mm = flex.double([0] * len(observations.data()))
             #calculate the crystal orientation
             O = sqr(dials_crystal.get_unit_cell().orthogonalization_matrix(
             )).transpose()
             R = sqr(dials_crystal.get_U()).transpose()
             from cctbx.crystal_orientation import crystal_orientation, basis_type
             crystal_init_orientation = crystal_orientation(
                 O * R, basis_type.direct)
         else:
             txt_exception += exp_json_file + ' not found'
             print txt_exception
             return None, txt_exception
     else:
         #for cctbx.xfel proceed as usual
         observations = observations_pickle["observations"][0]
         detector_distance_mm = observations_pickle['distance']
         mm_predictions = iparams.pixel_size_mm * (
             observations_pickle['mapped_predictions'][0])
         xbeam = observations_pickle["xbeam"]
         ybeam = observations_pickle["ybeam"]
         alpha_angle_obs = flex.double([math.atan(abs(pred[0]-xbeam)/abs(pred[1]-ybeam)) \
                                        for pred in mm_predictions])
         spot_pred_x_mm = flex.double(
             [pred[0] - xbeam for pred in mm_predictions])
         spot_pred_y_mm = flex.double(
             [pred[1] - ybeam for pred in mm_predictions])
         #Polarization correction
         wavelength = observations_pickle["wavelength"]
         crystal_init_orientation = observations_pickle[
             "current_orientation"][0]
     #continue reading...
     if iparams.flag_LP_correction and "observations" in observations_pickle:
         fx = 1 - iparams.polarization_horizontal_fraction
         fy = 1 - fx
         if fx > 1.0 or fx < 0:
             print 'Horizontal polarization fraction is not correct. The value must be >= 0 and <= 1'
             print 'No polarization correction. Continue with post-refinement'
         else:
             phi_angle_obs = flex.double([math.atan2(pred[1]-ybeam, pred[0]-xbeam) \
                                              for pred in mm_predictions])
             bragg_angle_obs = observations.two_theta(wavelength).data()
             P = ((fx*((flex.sin(phi_angle_obs)**2)+((flex.cos(phi_angle_obs)**2)*flex.cos(bragg_angle_obs)**2)))+\
               (fy*((flex.cos(phi_angle_obs)**2)+((flex.sin(phi_angle_obs)**2)*flex.cos(bragg_angle_obs)**2))))
             I_prime = observations.data() / P
             sigI_prime = observations.sigmas() / P
             observations = observations.customized_copy(
                 data=flex.double(I_prime), sigmas=flex.double(sigI_prime))
     #set observations with target space group - !!! required for correct
     #merging due to map_to_asu command.
     if iparams.target_crystal_system is not None:
         target_crystal_system = iparams.target_crystal_system
     else:
         target_crystal_system = observations.crystal_symmetry(
         ).space_group().crystal_system()
     lph = lbfgs_partiality_handler()
     if iparams.flag_override_unit_cell:
         uc_constrained_inp = lph.prep_input(
             iparams.target_unit_cell.parameters(), target_crystal_system)
     else:
         uc_constrained_inp = lph.prep_input(
             observations.unit_cell().parameters(), target_crystal_system)
     uc_constrained = list(
         lph.prep_output(uc_constrained_inp, target_crystal_system))
     try:
         #apply constrain using the crystal system
         miller_set = symmetry(unit_cell=uc_constrained,
                               space_group_symbol=iparams.target_space_group
                               ).build_miller_set(
                                   anomalous_flag=target_anomalous_flag,
                                   d_min=iparams.merge.d_min)
         observations = observations.customized_copy(
             anomalous_flag=target_anomalous_flag,
             crystal_symmetry=miller_set.crystal_symmetry())
     except Exception:
         a, b, c, alpha, beta, gamma = uc_constrained
         txt_exception += 'Mismatch spacegroup (%6.2f,%6.2f,%6.2f,%6.2f,%6.2f,%6.2f)' % (
             a, b, c, alpha, beta, gamma)
         print txt_exception
         return None, txt_exception
     #reset systematic absence
     sys_absent_negate_flags = flex.bool([
         sys_absent_flag[1] == False
         for sys_absent_flag in observations.sys_absent_flags()
     ])
     observations = observations.select(sys_absent_negate_flags)
     alpha_angle_obs = alpha_angle_obs.select(sys_absent_negate_flags)
     spot_pred_x_mm = spot_pred_x_mm.select(sys_absent_negate_flags)
     spot_pred_y_mm = spot_pred_y_mm.select(sys_absent_negate_flags)
     #remove observations from rejection list
     if os.path.isfile(iparams.run_no + '/rejections.txt'):
         txt_out = pickle_filename + ' \nN_before_rejection: ' + str(
             len(observations.data())) + '\n'
         file_reject = open(iparams.run_no + '/rejections.txt', 'r')
         data_reject = file_reject.read().split("\n")
         miller_indices_ori_rejected = flex.miller_index()
         for row_reject in data_reject:
             col_reject = row_reject.split()
             if len(col_reject) > 0:
                 if col_reject[0].strip() == pickle_filename:
                     miller_indices_ori_rejected.append(
                         (int(col_reject[1].strip()),
                          int(col_reject[2].strip()),
                          int(col_reject[3].strip())))
         if len(miller_indices_ori_rejected) > 0:
             i_sel_flag = flex.bool([True] * len(observations.data()))
             for miller_index_ori_rejected in miller_indices_ori_rejected:
                 i_index_ori = 0
                 for miller_index_ori in observations.indices():
                     if miller_index_ori_rejected == miller_index_ori:
                         i_sel_flag[i_index_ori] = False
                         txt_out += ' -Discard:' + str(miller_index_ori[0]) + \
                     ','+str(miller_index_ori[1])+','+str(miller_index_ori[2]) + '\n'
                     i_index_ori += 1
             observations = observations.customized_copy(
                 indices=observations.indices().select(i_sel_flag),
                 data=observations.data().select(i_sel_flag),
                 sigmas=observations.sigmas().select(i_sel_flag))
             alpha_angle_obs = alpha_angle_obs.select(i_sel_flag)
             spot_pred_x_mm = spot_pred_x_mm.select(i_sel_flag)
             spot_pred_y_mm = spot_pred_y_mm.select(i_sel_flag)
             txt_out += 'N_after_rejection: ' + str(len(
                 observations.data())) + '\n'
     #filter resolution
     i_sel_res = observations.resolution_filter_selection(
         d_max=iparams.merge.d_max, d_min=iparams.merge.d_min)
     observations = observations.select(i_sel_res)
     alpha_angle_obs = alpha_angle_obs.select(i_sel_res)
     spot_pred_x_mm = spot_pred_x_mm.select(i_sel_res)
     spot_pred_y_mm = spot_pred_y_mm.select(i_sel_res)
     #Filter weak
     i_sel = (observations.data() /
              observations.sigmas()) > iparams.merge.sigma_min
     observations = observations.select(i_sel)
     alpha_angle_obs = alpha_angle_obs.select(i_sel)
     spot_pred_x_mm = spot_pred_x_mm.select(i_sel)
     spot_pred_y_mm = spot_pred_y_mm.select(i_sel)
     #filter icering (if on)
     if iparams.icering.flag_on:
         miller_indices = flex.miller_index()
         I_set = flex.double()
         sigI_set = flex.double()
         alpha_angle_obs_set = flex.double()
         spot_pred_x_mm_set = flex.double()
         spot_pred_y_mm_set = flex.double()
         for miller_index, d, I, sigI, alpha, spot_x, spot_y in zip(
                 observations.indices(),
                 observations.d_spacings().data(), observations.data(),
                 observations.sigmas(), alpha_angle_obs, spot_pred_x_mm,
                 spot_pred_y_mm):
             if d > iparams.icering.d_upper or d < iparams.icering.d_lower:
                 miller_indices.append(miller_index)
                 I_set.append(I)
                 sigI_set.append(sigI)
                 alpha_angle_obs_set.append(alpha)
                 spot_pred_x_mm_set.append(spot_x)
                 spot_pred_y_mm_set.append(spot_y)
         observations = observations.customized_copy(indices=miller_indices,
                                                     data=I_set,
                                                     sigmas=sigI_set)
         alpha_angle_obs = alpha_angle_obs_set[:]
         spot_pred_x_mm = spot_pred_x_mm_set[:]
         spot_pred_y_mm = spot_pred_y_mm_set[:]
     #replacing sigI (if set)
     if iparams.flag_replace_sigI:
         observations = observations.customized_copy(
             sigmas=flex.sqrt(observations.data()))
     inputs = observations, alpha_angle_obs, spot_pred_x_mm, spot_pred_y_mm, detector_distance_mm, wavelength, crystal_init_orientation
     return inputs, 'OK'
コード例 #5
0
ファイル: postrefine.py プロジェクト: cctbx/cctbx-playground
 def organize_input(self, observations_pickle, iparams, avg_mode, pickle_filename=None):
   """Given the pickle file, extract and prepare observations object and
   the alpha angle (meridional to equatorial).
   """
   identified_isoform = None
   if iparams.isoform_name is not None:
     identified_isoform = iparams.isoform_name
     if "identified_isoform" not in observations_pickle:
       return None, "No identified isoform"
     else:
       identified_isoform = observations_pickle["identified_isoform"]
     if observations_pickle["identified_isoform"] != iparams.isoform_name:
       return None, "Identified isoform(%s) is not the requested isoform (%s)"%(observations_pickle["identified_isoform"], iparams.isoform_name)
   if iparams.flag_weak_anomalous:
     if avg_mode == 'final':
       target_anomalous_flag = iparams.target_anomalous_flag
     else:
       target_anomalous_flag = False
   else:
     target_anomalous_flag = iparams.target_anomalous_flag
   img_filename_only = ''
   if pickle_filename is not None:
     pickle_filepaths = pickle_filename.split('/')
     img_filename_only = pickle_filepaths[len(pickle_filepaths)-1]
   txt_exception = ' {0:40} ==> '.format(img_filename_only)
   observations = observations_pickle["observations"][0]
   detector_distance_mm = observations_pickle['distance']
   mapped_predictions = observations_pickle['mapped_predictions'][0]
   #set observations with target space group - !!! required for correct
   #merging due to map_to_asu command.
   if iparams.target_crystal_system is not None:
     target_crystal_system = iparams.target_crystal_system
   else:
     target_crystal_system = observations.crystal_symmetry().space_group().crystal_system()
   lph = lbfgs_partiality_handler()
   if iparams.flag_override_unit_cell:
     uc_constrained_inp = lph.prep_input(iparams.target_unit_cell.parameters(), target_crystal_system)
   else:
     uc_constrained_inp = lph.prep_input(observations.unit_cell().parameters(), target_crystal_system)
   uc_constrained = list(lph.prep_output(uc_constrained_inp, target_crystal_system))
   try:
     #apply constrain using the crystal system
     miller_set = symmetry(
         unit_cell=uc_constrained,
         space_group_symbol=iparams.target_space_group
       ).build_miller_set(
         anomalous_flag=target_anomalous_flag,
         d_min=iparams.merge.d_min)
     observations = observations.customized_copy(anomalous_flag=target_anomalous_flag,
                     crystal_symmetry=miller_set.crystal_symmetry())
   except Exception:
     a,b,c,alpha,beta,gamma = uc_constrained
     txt_exception += 'Mismatch spacegroup (%6.2f,%6.2f,%6.2f,%6.2f,%6.2f,%6.2f)'%(a,b,c,alpha,beta,gamma)
     return None, txt_exception
   #reset systematic absence
   sys_absent_negate_flags = flex.bool([sys_absent_flag[1]==False for sys_absent_flag in observations.sys_absent_flags()])
   observations = observations.select(sys_absent_negate_flags)
   mapped_predictions = mapped_predictions.select(sys_absent_negate_flags)
   import os.path
   #remove observations from rejection list
   if os.path.isfile(iparams.run_no+'/rejections.txt'):
     txt_out = pickle_filename + ' \nN_before_rejection: ' + str(len(observations.data())) + '\n'
     file_reject = open(iparams.run_no+'/rejections.txt', 'r')
     data_reject=file_reject.read().split("\n")
     miller_indices_ori_rejected = flex.miller_index()
     for row_reject in data_reject:
       col_reject = row_reject.split()
       if len(col_reject) > 0:
         if col_reject[0].strip() == pickle_filename:
           miller_indices_ori_rejected.append((int(col_reject[1].strip()), int(col_reject[2].strip()), int(col_reject[3].strip())))
     if len(miller_indices_ori_rejected) > 0:
       i_sel_flag = flex.bool([True]*len(observations.data()))
       for miller_index_ori_rejected in miller_indices_ori_rejected:
         i_index_ori = 0
         for miller_index_ori in observations.indices():
           if miller_index_ori_rejected == miller_index_ori:
             i_sel_flag[i_index_ori] = False
             txt_out += ' -Discard:' + str(miller_index_ori[0]) + \
         ','+str(miller_index_ori[1])+','+str(miller_index_ori[2]) + '\n'
           i_index_ori += 1
       observations = observations.customized_copy(indices=observations.indices().select(i_sel_flag),
           data=observations.data().select(i_sel_flag),
           sigmas=observations.sigmas().select(i_sel_flag))
       mapped_predictions = mapped_predictions.select(i_sel_flag)
       txt_out += 'N_after_rejection: ' + str(len(observations.data())) + '\n'
   #filter resolution
   i_sel_res = observations.resolution_filter_selection(d_max=iparams.merge.d_max, d_min=iparams.merge.d_min)
   observations = observations.select(i_sel_res)
   mapped_predictions = mapped_predictions.select(i_sel_res)
   #Filter weak
   i_sel = (observations.data()/observations.sigmas()) > iparams.merge.sigma_min
   observations = observations.select(i_sel)
   mapped_predictions = mapped_predictions.select(i_sel)
   #filter icering (if on)
   #replacing sigI (if set)
   if iparams.flag_replace_sigI:
     observations = observations.customized_copy(sigmas=flex.sqrt(observations.data()))
   #setup spot predicton
   mm_predictions = iparams.pixel_size_mm*mapped_predictions
   xbeam = observations_pickle["xbeam"]
   ybeam = observations_pickle["ybeam"]
   alpha_angle_obs = flex.double([math.atan(abs(pred[0]-xbeam)/abs(pred[1]-ybeam)) \
                                  for pred in mm_predictions])
   spot_pred_x_mm = flex.double([pred[0]-xbeam for pred in mm_predictions])
   spot_pred_y_mm = flex.double([pred[1]-ybeam for pred in mm_predictions])
   #Polarization correction
   wavelength = observations_pickle["wavelength"]
   if iparams.flag_LP_correction:
     fx = 1 - iparams.polarization_horizontal_fraction
     fy = 1 - fx
     if fx > 1.0 or fx < 0:
       print 'Horizontal polarization fraction is not correct. The value must be >= 0 and <= 1'
       print 'No polarization correction. Continue with post-refinement'
     else:
       phi_angle_obs = flex.double([math.atan2(pred[1]-ybeam, pred[0]-xbeam) \
                                        for pred in mm_predictions])
       bragg_angle_obs = observations.two_theta(wavelength).data()
       P = ((fx*((flex.sin(phi_angle_obs)**2)+((flex.cos(phi_angle_obs)**2)*flex.cos(bragg_angle_obs)**2)))+\
         (fy*((flex.cos(phi_angle_obs)**2)+((flex.sin(phi_angle_obs)**2)*flex.cos(bragg_angle_obs)**2))))
       I_prime = observations.data()/P
       sigI_prime =observations.sigmas()/P
       observations = observations.customized_copy(data=flex.double(I_prime),
                                                   sigmas=flex.double(sigI_prime))
   inputs = observations, alpha_angle_obs, spot_pred_x_mm, spot_pred_y_mm, \
     detector_distance_mm, identified_isoform, \
     mapped_predictions, xbeam, ybeam
   return inputs, 'OK'
コード例 #6
0
ファイル: postrefine.py プロジェクト: hainm/cctbx_project
 def organize_input(self,
                    observations_pickle,
                    iparams,
                    avg_mode,
                    pickle_filename=None):
     """Given the pickle file, extract and prepare observations object and
 the alpha angle (meridional to equatorial).
 """
     identified_isoform = None
     if iparams.isoform_name is not None:
         identified_isoform = iparams.isoform_name
         if "identified_isoform" not in observations_pickle:
             return None, "No identified isoform"
         else:
             identified_isoform = observations_pickle["identified_isoform"]
         if observations_pickle[
                 "identified_isoform"] != iparams.isoform_name:
             return None, "Identified isoform(%s) is not the requested isoform (%s)" % (
                 observations_pickle["identified_isoform"],
                 iparams.isoform_name)
     if iparams.flag_weak_anomalous:
         if avg_mode == 'final':
             target_anomalous_flag = iparams.target_anomalous_flag
         else:
             target_anomalous_flag = False
     else:
         target_anomalous_flag = iparams.target_anomalous_flag
     img_filename_only = ''
     if pickle_filename is not None:
         pickle_filepaths = pickle_filename.split('/')
         img_filename_only = pickle_filepaths[len(pickle_filepaths) - 1]
     txt_exception = ' {0:40} ==> '.format(img_filename_only)
     observations = observations_pickle["observations"][0]
     detector_distance_mm = observations_pickle['distance']
     mapped_predictions = observations_pickle['mapped_predictions'][0]
     #set observations with target space group - !!! required for correct
     #merging due to map_to_asu command.
     if iparams.target_crystal_system is not None:
         target_crystal_system = iparams.target_crystal_system
     else:
         target_crystal_system = observations.crystal_symmetry(
         ).space_group().crystal_system()
     lph = lbfgs_partiality_handler()
     if iparams.flag_override_unit_cell:
         uc_constrained_inp = lph.prep_input(
             iparams.target_unit_cell.parameters(), target_crystal_system)
     else:
         uc_constrained_inp = lph.prep_input(
             observations.unit_cell().parameters(), target_crystal_system)
     uc_constrained = list(
         lph.prep_output(uc_constrained_inp, target_crystal_system))
     try:
         #apply constrain using the crystal system
         miller_set = symmetry(unit_cell=uc_constrained,
                               space_group_symbol=iparams.target_space_group
                               ).build_miller_set(
                                   anomalous_flag=target_anomalous_flag,
                                   d_min=iparams.merge.d_min)
         observations = observations.customized_copy(
             anomalous_flag=target_anomalous_flag,
             crystal_symmetry=miller_set.crystal_symmetry())
     except Exception:
         a, b, c, alpha, beta, gamma = uc_constrained
         txt_exception += 'Mismatch spacegroup (%6.2f,%6.2f,%6.2f,%6.2f,%6.2f,%6.2f)' % (
             a, b, c, alpha, beta, gamma)
         return None, txt_exception
     #reset systematic absence
     sys_absent_negate_flags = flex.bool([
         sys_absent_flag[1] == False
         for sys_absent_flag in observations.sys_absent_flags()
     ])
     observations = observations.select(sys_absent_negate_flags)
     mapped_predictions = mapped_predictions.select(sys_absent_negate_flags)
     import os.path
     #remove observations from rejection list
     if os.path.isfile(iparams.run_no + '/rejections.txt'):
         txt_out = pickle_filename + ' \nN_before_rejection: ' + str(
             len(observations.data())) + '\n'
         file_reject = open(iparams.run_no + '/rejections.txt', 'r')
         data_reject = file_reject.read().split("\n")
         miller_indices_ori_rejected = flex.miller_index()
         for row_reject in data_reject:
             col_reject = row_reject.split()
             if len(col_reject) > 0:
                 if col_reject[0].strip() == pickle_filename:
                     miller_indices_ori_rejected.append(
                         (int(col_reject[1].strip()),
                          int(col_reject[2].strip()),
                          int(col_reject[3].strip())))
         if len(miller_indices_ori_rejected) > 0:
             i_sel_flag = flex.bool([True] * len(observations.data()))
             for miller_index_ori_rejected in miller_indices_ori_rejected:
                 i_index_ori = 0
                 for miller_index_ori in observations.indices():
                     if miller_index_ori_rejected == miller_index_ori:
                         i_sel_flag[i_index_ori] = False
                         txt_out += ' -Discard:' + str(miller_index_ori[0]) + \
                     ','+str(miller_index_ori[1])+','+str(miller_index_ori[2]) + '\n'
                     i_index_ori += 1
             observations = observations.customized_copy(
                 indices=observations.indices().select(i_sel_flag),
                 data=observations.data().select(i_sel_flag),
                 sigmas=observations.sigmas().select(i_sel_flag))
             mapped_predictions = mapped_predictions.select(i_sel_flag)
             txt_out += 'N_after_rejection: ' + str(len(
                 observations.data())) + '\n'
     #filter resolution
     i_sel_res = observations.resolution_filter_selection(
         d_max=iparams.merge.d_max, d_min=iparams.merge.d_min)
     observations = observations.select(i_sel_res)
     mapped_predictions = mapped_predictions.select(i_sel_res)
     #Filter weak
     i_sel = (observations.data() /
              observations.sigmas()) > iparams.merge.sigma_min
     observations = observations.select(i_sel)
     mapped_predictions = mapped_predictions.select(i_sel)
     #filter icering (if on)
     #replacing sigI (if set)
     if iparams.flag_replace_sigI:
         observations = observations.customized_copy(
             sigmas=flex.sqrt(observations.data()))
     #setup spot predicton
     mm_predictions = iparams.pixel_size_mm * mapped_predictions
     xbeam = observations_pickle["xbeam"]
     ybeam = observations_pickle["ybeam"]
     alpha_angle_obs = flex.double([math.atan(abs(pred[0]-xbeam)/abs(pred[1]-ybeam)) \
                                    for pred in mm_predictions])
     spot_pred_x_mm = flex.double(
         [pred[0] - xbeam for pred in mm_predictions])
     spot_pred_y_mm = flex.double(
         [pred[1] - ybeam for pred in mm_predictions])
     #Polarization correction
     wavelength = observations_pickle["wavelength"]
     if iparams.flag_LP_correction:
         fx = 1 - iparams.polarization_horizontal_fraction
         fy = 1 - fx
         if fx > 1.0 or fx < 0:
             print 'Horizontal polarization fraction is not correct. The value must be >= 0 and <= 1'
             print 'No polarization correction. Continue with post-refinement'
         else:
             phi_angle_obs = flex.double([math.atan2(pred[1]-ybeam, pred[0]-xbeam) \
                                              for pred in mm_predictions])
             bragg_angle_obs = observations.two_theta(wavelength).data()
             P = ((fx*((flex.sin(phi_angle_obs)**2)+((flex.cos(phi_angle_obs)**2)*flex.cos(bragg_angle_obs)**2)))+\
               (fy*((flex.cos(phi_angle_obs)**2)+((flex.sin(phi_angle_obs)**2)*flex.cos(bragg_angle_obs)**2))))
             I_prime = observations.data() / P
             sigI_prime = observations.sigmas() / P
             observations = observations.customized_copy(
                 data=flex.double(I_prime), sigmas=flex.double(sigI_prime))
     inputs = observations, alpha_angle_obs, spot_pred_x_mm, spot_pred_y_mm, \
       detector_distance_mm, identified_isoform, \
       mapped_predictions, xbeam, ybeam
     return inputs, 'OK'