#(total_loss, logits, trans, pred_ids) = \ (total_loss, per_example_loss, logits, probabilities) = create_model(bert_config=bert_config, is_training=False, input_ids=input_ids_p, input_mask=input_mask_p, segment_ids=None, labels=None, num_labels=num_labels, use_one_hot_embeddings=False) saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint(model_dir)) tokenizer = tokenization.FullTokenizer(vocab_file=os.path.join( bert_dir, 'vocab.txt'), do_lower_case=True) @app.route('/class_predict_service', methods=['GET', 'POST']) def class_predict_service(): """ do online prediction. each time make prediction for one instance. you can change to a batch if you want. :param line: a list. element is: [dummy_label,text_a,text_b] :return: """ def convert(line): feature = convert_single_example(0, line, label_list, max_seq_length, tokenizer) input_ids = np.reshape([feature.input_ids],
encoding='utf-8') text_f = open(os.path.join(os.path.join(DATA_OUTPUT_DIR, file_set_type), "text.txt"), "w", encoding='utf-8') token_in_f = open(os.path.join( os.path.join(DATA_OUTPUT_DIR, file_set_type), "token_in.txt"), "w", encoding='utf-8') token_in_not_UNK_f = open(os.path.join( os.path.join(DATA_OUTPUT_DIR, file_set_type), "token_in_not_UNK.txt"), "w", encoding='utf-8') # Processing bert_tokenizer = tokenization.FullTokenizer( vocab_file=vocab_file, do_lower_case=True) # 初始化 bert_token 工具 # feature text = '\n'.join(df_data.item) text_tokened = df_data.item.apply(bert_tokenizer.tokenize) text_tokened = '\n'.join([' '.join(row) for row in text_tokened]) text_tokened_not_UNK = df_data.item.apply(bert_tokenizer.tokenize_not_UNK) text_tokened_not_UNK = '\n'.join( [' '.join(row) for row in text_tokened_not_UNK]) # label only choose first 3 lables: 高中 学科 一级知识点 # if you want all labels # just remove list slice predicate_list = df_data.labels.apply(lambda x: x.split()) predicate_list_str = '\n'.join([' '.join(row) for row in predicate_list]) print(f'datasize: {len(df_data)}') text_f.write(text)
def predict_bert(m_type, data_path, train_data_file, test_data_file): parameter_setting(m_type=m_type, data_path=data_path, train_file=train_data_file, test_file=test_data_file) checkpoint_file = tf.train.latest_checkpoint(FLAGS.model_output_dir) # FLAGS.model_output_dir = None precessor = DomainClf_Processor() label_list = precessor.get_labels() bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=FLAGS.master, model_dir=FLAGS.model_output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host), session_config=config) model_fn = model_fn_builder(bert_config=bert_config, num_labels=len(label_list), init_checkpoint=checkpoint_file, learning_rate=FLAGS.learning_rate, num_train_steps=10000, num_warmup_steps=1000, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) predict_examples = precessor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) predict_file = os.path.join( FLAGS.model_output_dir, "predict.tf_record") # overwrite the latest file file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.model_output_dir, FLAGS.test_file.split('.')[0] + ".tsv") output_label_file = os.path.join( FLAGS.model_output_dir, FLAGS.test_file.split('.')[0] + "_labels.tsv") f = open(output_label_file, "w") s = set() result_list = [] with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] assert len(probabilities) == len(label_list) if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" result_list.append(output_line.strip()) writer.write(output_line) num_written_lines += 1 # labels lbl_id = np.argmax(np.asarray(probabilities)) f.write(label_list[lbl_id] + "\n") s.update([label_list[lbl_id]]) write_list_to_file( os.path.join(base_dir, 'result/stacking/bert', str(FLAGS.train_file.split('.')[0]), FLAGS.test_file.split('.')[0] + '.tsv'), result_list)
def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "baidu_95": Baidu_95_Multi_Label_Classification_Processor, } tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % task_name) processor = processors[task_name]() label_list = processor.get_labels() label_length = len(label_list) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, label_length=label_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval: eval_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, label_length=label_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % FLAGS.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, label_length=label_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_score_value_file = os.path.join(FLAGS.output_dir, "predicate_score_value.txt") output_predicate_predict_file = os.path.join(FLAGS.output_dir, "predicate_predict.txt") with tf.gfile.GFile(output_score_value_file, "w") as score_value_writer: with tf.gfile.GFile(output_predicate_predict_file, "w") as predicate_predict_writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line_score_value = " ".join( str(class_probability) for class_probability in probabilities) + "\n" predicate_predict = [] for idx, class_probability in enumerate(probabilities): if class_probability > 0.5: predicate_predict.append(label_list[idx]) output_line_predicate_predict = " ".join(predicate_predict) + "\n" predicate_predict_writer.write(output_line_predicate_predict) score_value_writer.write(output_line_score_value) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples
def train_eval_bert(m_type, data_path, train_data_file, dev_data_file, seq_len, epoch): """ parameter setting """ parameter_setting(m_type=m_type, data_path=data_path, train_file=train_data_file, dev_file=dev_data_file, max_seq_length=seq_len, EPOCH=epoch) """ logging setting """ tf.logging.set_verbosity(tf.logging.INFO) # DEBUG,INFO,WARN,ERROR, FATAL """ processor """ processor = DomainClf_Processor() """ tokenizer """ tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) """ bert config """ bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) """ build output folder """ tf.gfile.MakeDirs(FLAGS.model_output_dir) """ get label """ label_list = processor.get_labels() """ tokenizer """ tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) """ train examples""" train_examples = processor.get_train_examples(FLAGS.data_dir) num_batch_single_epoch = int(len(train_examples) / FLAGS.train_batch_size) num_warmup_steps = int(num_batch_single_epoch * FLAGS.warmup_proportion) print("num_warmup_steps", num_warmup_steps) """ Train Setting """ train_file = os.path.join(FLAGS.model_output_dir, "train.tf_record") file_based_convert_examples_to_features(train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_batch_single_epoch) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) # estimator.train(input_fn=train_input_fn, max_steps=num_batch_single_epoch) """ run setting """ is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=FLAGS.master, model_dir=FLAGS.model_output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host), session_config=config) """ model fn for estimator""" model_fn = model_fn_builder(bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_batch_single_epoch, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) """estimator setting """ estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) """ Eval Setting """ """ eval examples """ eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) eval_file = os.path.join(FLAGS.model_output_dir, "eval.tf_record") file_based_convert_examples_to_features(eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=False) """ early stopping hook """ early_stopping = tf.contrib.estimator.stop_if_no_decrease_hook( estimator, metric_name='eval_accuracy', max_steps_without_decrease=FLAGS.iterations_per_loop * 3, min_steps=num_batch_single_epoch * 1) # min_step=num_batch_single_epoch*5) # min_step """ train and eval """ train_spec = tf.estimator.TrainSpec(train_input_fn, hooks=[early_stopping]) eval_spec = tf.estimator.EvalSpec( eval_input_fn, exporters=None, throttle_secs=1) # throttle_secs 多少秒之内不进行 eval result_eval = tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) print('\n\n result eval', result_eval)