if __name__ == "__main__" : torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) np.random.seed(args.seed) if os.path.exists(args.save) and args.load == "none" : raise NameError("previous experiment '{}' already exists!".format(args.save)) if args.load == "none" : os.makedirs(args.save) logger = init_logger(logpath=args.save, experiment_name="logs-"+args.model) logger.info(args) args.device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu") train_loader, test_loader, train_eval_loader = get_cifar10_loaders(data_aug=True, batch_size=args.tbsize) model = cifar_model(args.model, layers=args.block, norm_type=args.norm, init_option=args.init) logger.info(model) if args.load != "none" : model.load_state_dict(torch.load(os.path.join(args.load, "model_final.pt"), map_location=args.device)['state_dict']) model.to(args.device) loader = {"train_loader": train_loader, "train_eval_loader": train_eval_loader, "test_loader": test_loader} if args.opt =="sgd" : optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.decay, momentum=0.9, nesterov=args.nesterov) if args.adv == "none" : if args.model == "ssp2" or args.model == "ssp3" : scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[70,120,160], gamma=0.1) else : scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60,100,140], gamma=0.1) if args.epochs <= 100 : scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30,60,90], gamma=0.1)
args.save = os.path.join("experiments", args.save) if os.path.exists(args.save) and args.load == "none": raise NameError("previous experiment '{}' already exists!".format( args.save)) os.makedirs(args.save) logger = init_logger(logpath=args.save, experiment_name="logs-" + args.model) logger.info(args) args.device = torch.device( "cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu") train_loader, test_loader, train_eval_loader = get_cifar10_loaders( data_aug=True, batch_size=args.tbsize) model = cifar_model(args.model, layers=args.block, norm_type=args.norm) logger.info(model) model.to(args.device) loader = { "train_loader": train_loader, "train_eval_loader": train_eval_loader, "test_loader": test_loader } if args.opt == "sgd": optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.decay, momentum=0.9, nesterov=args.nesterov) if args.adv == "none":