def build_model(): utils.set_nn_config() inp = Input(config.MODULE_INPUT_DIM) layer = inp layer = utils.conv_layer(layer, CONV_FILTERS, KERNEL_SIZE, REGULARIZER_CONST) for _ in range(CONV_LAYERS): layer = utils.conv_layer(layer, CONV_FILTERS, KERNEL_SIZE, REGULARIZER_CONST) out = output_layer(layer) model = Model(inputs=inp, outputs=out) compile_model(model) return model
def build_model(): utils.set_nn_config() inp = Input(config.SYMBOLS_INPUT_DIM) layer = utils.conv_layer(inp, CONV_FILTERS, KERNEL_SIZE, REGULARIZER_CONST) layer = utils.conv_layer(layer, CONV_FILTERS*2, KERNEL_SIZE, REGULARIZER_CONST) layer = Dropout(0.25)(layer) layer = MaxPooling2D(pool_size=(2, 2), padding="same")(layer) layer = Dense(DENSE_UNITS, activation='relu')(layer) layer = MaxPooling2D(pool_size=(2, 2), padding="same")(layer) layer = Flatten()(layer) layer = Dense(DENSE_UNITS // 2, activation='relu')(layer) layer = Dropout(0.5)(layer) out = Dense(config.SYMBOLS_OUTPUT_DIM, activation='softmax')(layer) model = Model(inputs=inp, outputs=out) compile_model(model) return model
def build_model(): sess = utils.get_nn_config() graph = tf.Graph() inp = Input(config.MODULE_INPUT_DIM) layer = inp layer = utils.conv_layer(layer, CONV_FILTERS, KERNEL_SIZE, REGULARIZER_CONST) for i in range(CONV_LAYERS): layer = utils.conv_layer(layer, CONV_FILTERS, KERNEL_SIZE, REGULARIZER_CONST) #if i % 3 == 0: # layer = Dropout(0.3)(layer) out = output_layer(layer) model = Model(inputs=inp, outputs=out) compile_model(model) model._make_predict_function() return model, graph, sess
def build_model(): sess = utils.get_nn_config() graph = Graph() inp = Input(config.SYMBOLS_INPUT_DIM) layer = utils.conv_layer(inp, CONV_FILTERS, KERNEL_SIZE, REGULARIZER_CONST) layer = utils.conv_layer(layer, CONV_FILTERS * 2, KERNEL_SIZE, REGULARIZER_CONST) layer = Dropout(0.25)(layer) layer = MaxPooling2D(pool_size=(2, 2), padding="same")(layer) layer = Dense(512, activation='relu')(layer) layer = MaxPooling2D(pool_size=(2, 2), padding="same")(layer) layer = Flatten()(layer) layer = Dense(256, activation='relu')(layer) layer = Dropout(0.5)(layer) out = Dense(config.SYMBOLS_OUTPUT_DIM, activation='softmax')(layer) model = Model(inputs=inp, outputs=out) compile_model(model) model._make_predict_function() return model, graph, sess