def __init__(self, args): super(EDSR, self).__init__() nResBlock = args.nResBlock nFeat = args.nFeat scale = args.scale[0] self.args = args # Submean layer self.subMean = common.meanShift( args.rgbRange, (0.4488, 0.4371, 0.4040), -1 * args.subMean) # Head convolution for feature extracting self.headConv = common.conv3x3(args.nChannel, nFeat) # Main branch modules = [common.ResBlock(nFeat) for _ in range(nResBlock)] modules.append(common.conv3x3(nFeat, nFeat)) self.body = nn.Sequential(*modules) # Upsampler self.upsample = common.upsampler(scale, nFeat) # Tail convolution for reconstruction self.tailConv = common.conv3x3(nFeat, args.nChannel) # Addmean layer self.addMean = common.meanShift( args.rgbRange, (0.4488, 0.4371, 0.4040), 1 * args.subMean)
def __init__(self, args): super(EDSR_scale, self).__init__(args) nResBlock = args.nResBlock nFeat = args.nFeat # Main branch modules = [ common.ResBlock_scale(nFeat, scale=0.1) for _ in range(nResBlock)] modules.append(common.conv3x3(nFeat, nFeat)) self.body = nn.Sequential(*modules)
def __init__(self, args): super(MDSR, self).__init__() nResBlock = args.nResBlock nFeat = args.nFeat self.args = args subMul, addMul = -1 * args.subMean, 1 * args.subMean # Submean layer self.subMean = common.meanShift( args.rgbRange, (0.4488, 0.4371, 0.4040), subMul) # Head convolution for feature extracting self.headConv = common.conv3x3(args.nChannel, nFeat) # Scale-dependent pre-processing module self.preProcess = nn.ModuleList([ nn.Sequential( common.ResBlock(nFeat, kernel_size=5), common.ResBlock(nFeat, kernel_size=5)) for _ in args.scale]) # Main branch modules = [common.ResBlock(nFeat) for _ in range(nResBlock)] modules.append(common.conv3x3(nFeat, nFeat)) self.body = nn.Sequential(*modules) # Scale-dependent upsampler self.upsample = nn.ModuleList([ common.upsampler(s, nFeat) for s in args.scale]) # Tail convolution for reconstruction self.tailConv = common.conv3x3(nFeat, args.nChannel) # Addmean layer self.addMean = common.meanShift( args.rgbRange, (0.4488, 0.4371, 0.4040), addMul) self.scaleIdx = 0