コード例 #1
0
    def forward(self, x, x_p, mask, mask_p, train=True):
        prior, _, attn_dist, _ = self.dec((self.query, x, [], (mask, None)))
        prior = self.layer_norm1(prior)

        mean = self.mean(prior)
        log_var = self.var(prior)
        eps = torch.randn(prior.size())
        std = torch.exp(0.5 * log_var)
        if config.USE_CUDA: eps = eps.cuda()
        z = eps * std + mean
        kld_loss = 0

        if x_p is not None:
            posterior, _, attn_dist_p, _ = self.var_dec(
                (self.query, x_p, [], (mask_p, None)))
            posterior = self.layer_norm2(posterior)
            mean_p = self.mean_p(posterior)
            log_var_p = self.var_p(posterior)
            kld_loss = gaussian_kld(mean_p, log_var_p, mean, log_var)
            kld_loss = torch.mean(kld_loss)

        if train:
            std = torch.exp(0.5 * log_var_p)
            if config.USE_CUDA: eps = eps.cuda()
            z = eps * std + mean_p
        return kld_loss, z
コード例 #2
0
    def train_one_batch(self, batch, iter, train=True):
        enc_batch, _, _, enc_batch_extend_vocab, extra_zeros, _, _ = get_input_from_batch(
            batch)
        dec_batch, _, _, _, _ = get_output_from_batch(batch)

        if (config.noam):
            self.optimizer.optimizer.zero_grad()
        else:
            self.optimizer.zero_grad()

        ## Response encode
        mask_res = batch["posterior_batch"].data.eq(
            config.PAD_idx).unsqueeze(1)
        posterior_mask = self.embedding(batch["posterior_mask"])
        r_encoder_outputs = self.r_encoder(
            self.embedding(batch["posterior_batch"]), mask_res)
        ## Encode
        mask_src = enc_batch.data.eq(config.PAD_idx).unsqueeze(1)
        emb_mask = self.embedding(batch["input_mask"])
        encoder_outputs = self.encoder(self.embedding(enc_batch), mask_src)
        meta = self.embedding(batch["program_label"])

        # Decode
        mask_trg = dec_batch.data.eq(config.PAD_idx).unsqueeze(1)
        latent_dim = meta.size()[-1]
        meta = meta.repeat(1, dec_batch.size(1)).view(dec_batch.size(0),
                                                      dec_batch.size(1),
                                                      latent_dim)
        pre_logit, attn_dist, mean, log_var = self.decoder(
            meta, encoder_outputs, r_encoder_outputs,
            (mask_src, mask_res, mask_trg))
        if not train:
            pre_logit, attn_dist, _, _ = self.decoder(
                meta, encoder_outputs, None, (mask_src, None, mask_trg))
        ## compute output dist
        logit = self.generator(
            pre_logit,
            attn_dist,
            enc_batch_extend_vocab if config.pointer_gen else None,
            extra_zeros,
            attn_dist_db=None)
        ## loss: NNL if ptr else Cross entropy
        loss_rec = self.criterion(logit.contiguous().view(-1, logit.size(-1)),
                                  dec_batch.contiguous().view(-1))
        kld_loss = gaussian_kld(mean["posterior"], log_var["posterior"],
                                mean["prior"], log_var["prior"])
        kld_loss = torch.mean(kld_loss)
        kl_weight = min(iter / config.full_kl_step,
                        1) if config.full_kl_step > 0 else 1.0
        loss = loss_rec + config.kl_ceiling * kl_weight * kld_loss
        if (train):
            loss.backward()
            # clip gradient
            nn.utils.clip_grad_norm_(self.parameters(), config.max_grad_norm)
            self.optimizer.step()

        return loss_rec.item(), math.exp(min(loss_rec.item(),
                                             100)), kld_loss.item()
コード例 #3
0
    def train_n_batch(self, batchs, iter, train=True):
        if(config.noam):
            self.optimizer.optimizer.zero_grad()
        else:
            self.optimizer.zero_grad()
        for batch in batchs:
            enc_batch, _, _, enc_batch_extend_vocab, extra_zeros, _, _ = get_input_from_batch(batch)
            dec_batch, _, _, _, _ = get_output_from_batch(batch)
            ## Encode
            mask_src = enc_batch.data.eq(config.PAD_idx).unsqueeze(1)
            encoder_outputs = self.encoder(self.embedding(enc_batch), mask_src)

            meta = self.embedding(batch["program_label"])
            if config.dataset=="empathetic":
                meta = meta-meta
            # Decode
            sos_token = torch.LongTensor([config.SOS_idx] * enc_batch.size(0)).unsqueeze(1)
            if config.USE_CUDA: sos_token = sos_token.cuda()
            dec_batch_shift = torch.cat((sos_token,dec_batch[:, :-1]),1)

            mask_trg = dec_batch_shift.data.eq(config.PAD_idx).unsqueeze(1)

            pre_logit, attn_dist, mean, log_var, probs= self.decoder(self.embedding(dec_batch_shift)+meta.unsqueeze(1),encoder_outputs, True, (mask_src,mask_trg))
            ## compute output dist
            logit = self.generator(pre_logit,attn_dist,enc_batch_extend_vocab if config.pointer_gen else None, extra_zeros, attn_dist_db=None)
            ## loss: NNL if ptr else Cross entropy
            sbow = dec_batch #[batch, seq_len]
            seq_len = sbow.size(1)
            loss_rec = self.criterion(logit.contiguous().view(-1, logit.size(-1)), dec_batch.contiguous().view(-1))
            if config.model=="cvaetrs":
                loss_aux = 0
                for prob in probs:
                    sbow_mask = _get_attn_subsequent_mask(seq_len).transpose(1,2)
                    sbow.unsqueeze(2).repeat(1,1,seq_len).masked_fill_(sbow_mask,config.PAD_idx)#[batch, seq_len, seq_len]

                    loss_aux+= self.criterion(prob.contiguous().view(-1, prob.size(-1)), sbow.contiguous().view(-1))
                kld_loss = gaussian_kld(mean["posterior"], log_var["posterior"],mean["prior"], log_var["prior"])
                kld_loss = torch.mean(kld_loss)
                kl_weight = min(math.tanh(6 * iter/config.full_kl_step - 3) + 1, 1)
                #kl_weight = min(iter/config.full_kl_step, 1) if config.full_kl_step >0 else 1.0
                loss = loss_rec + config.kl_ceiling * kl_weight*kld_loss + config.aux_ceiling*loss_aux
                elbo = loss_rec+kld_loss
            else:
                loss = loss_rec
                elbo = loss_rec
                kld_loss = torch.Tensor([0])
                loss_aux = torch.Tensor([0])
            loss.backward()
            # clip gradient
        nn.utils.clip_grad_norm_(self.parameters(), config.max_grad_norm)
        self.optimizer.step()

        return loss_rec.item(), math.exp(min(loss_rec.item(), 100)), kld_loss.item(), loss_aux.item(), elbo.item()
コード例 #4
0
 def forward(self, x, x_p, train=True):
     mean = self.mean(x)
     log_var = self.var(x)
     eps = torch.randn(mean.size())
     std = torch.exp(0.5 * log_var)
     if config.USE_CUDA: eps = eps.cuda()
     z = eps * std + mean
     kld_loss = 0
     if x_p is not None:
         mean_p = self.mean_p(torch.cat((x_p, x), dim=-1))
         log_var_p = self.var_p(torch.cat((x_p, x), dim=-1))
         kld_loss = gaussian_kld(mean_p, log_var_p, mean, log_var)
         kld_loss = torch.mean(kld_loss)
     if train:
         std = torch.exp(0.5 * log_var_p)
         if config.USE_CUDA: eps = eps.cuda()
         z = eps * std + mean_p
     return kld_loss, z
コード例 #5
0
    def train_one_batch(self, batch, iter, train=True):
        enc_batch, enc_padding_mask, enc_lens, enc_batch_extend_vocab, extra_zeros, _, _ = get_input_from_batch(batch)
        dec_batch, _, _, _, _ = get_output_from_batch(batch)
        
        if(config.noam):
            self.optimizer.optimizer.zero_grad()
        else:
            self.optimizer.zero_grad()

        ## Response encode
        mask_res = batch["posterior_batch"].data.eq(config.PAD_idx).unsqueeze(1)
        post_emb = self.embedding(batch["posterior_batch"])
        r_encoder_outputs = self.r_encoder(post_emb, mask_res)

        ## Encode
        num_sentences, enc_seq_len = enc_batch.size()
        batch_size = enc_lens.size(0)
        max_len = enc_lens.data.max().item()
        input_lengths = torch.sum(~enc_batch.data.eq(config.PAD_idx), dim=1)
        
        # word level encoder
        enc_emb = self.embedding(enc_batch)
        word_encoder_outpus, word_encoder_hidden = self.word_encoder(enc_emb, input_lengths)
        word_encoder_hidden = word_encoder_hidden.transpose(1, 0).reshape(num_sentences, -1)

        # pad and pack word_encoder_hidden
        start = torch.cumsum(torch.cat((enc_lens.data.new(1).zero_(), enc_lens[:-1])), 0)
        word_encoder_hidden = torch.stack([pad(word_encoder_hidden.narrow(0, s, l), max_len)
                                            for s, l in zip(start.data.tolist(), enc_lens.data.tolist())], 0)
        
        # mask_src = ~(enc_padding_mask.bool()).unsqueeze(1)
        mask_src = (1 - enc_padding_mask.byte()).unsqueeze(1)
        
        # context level encoder
        if word_encoder_hidden.size(-1) != config.hidden_dim:
            word_encoder_hidden = self.linear(word_encoder_hidden)
        encoder_outputs = self.encoder(word_encoder_hidden, mask_src)

        # Decode
        sos_token = torch.LongTensor([config.SOS_idx] * batch_size).unsqueeze(1)
        if config.USE_CUDA: sos_token = sos_token.cuda()

        dec_batch_shift = torch.cat((sos_token, dec_batch[:, :-1]), 1) #(batch, len, embedding)
        mask_trg = dec_batch_shift.data.eq(config.PAD_idx).unsqueeze(1)
        dec_emb = self.embedding(dec_batch_shift)

        pre_logit, attn_dist, mean, log_var, probs = self.decoder(dec_emb, encoder_outputs, r_encoder_outputs, 
                                                                    (mask_src, mask_res, mask_trg))
        
        ## compute output dist
        logit = self.generator(pre_logit, attn_dist, enc_batch_extend_vocab if config.pointer_gen else None, extra_zeros, attn_dist_db=None)
        ## loss: NNL if ptr else Cross entropy
        sbow = dec_batch #[batch, seq_len]
        seq_len = sbow.size(1)
        loss_rec = self.criterion(logit.contiguous().view(-1, logit.size(-1)), dec_batch.contiguous().view(-1))
        if config.model=="cvaetrs":
            loss_aux = 0
            for prob in probs:
                sbow_mask = _get_attn_subsequent_mask(seq_len).transpose(1,2)
                sbow.unsqueeze(2).repeat(1,1,seq_len).masked_fill_(sbow_mask,config.PAD_idx)#[batch, seq_len, seq_len]

                loss_aux+= self.criterion(prob.contiguous().view(-1, prob.size(-1)), sbow.contiguous().view(-1))
            kld_loss = gaussian_kld(mean["posterior"], log_var["posterior"],mean["prior"], log_var["prior"])
            kld_loss = torch.mean(kld_loss)
            kl_weight = min(math.tanh(6 * iter/config.full_kl_step - 3) + 1, 1)
            #kl_weight = min(iter/config.full_kl_step, 1) if config.full_kl_step >0 else 1.0
            loss = loss_rec + config.kl_ceiling * kl_weight*kld_loss + config.aux_ceiling*loss_aux
            elbo = loss_rec + kld_loss
        else:
            loss = loss_rec
            elbo = loss_rec
            kld_loss = torch.Tensor([0])
            loss_aux = torch.Tensor([0])
        if(train):
            loss.backward()
            # clip gradient
            nn.utils.clip_grad_norm_(self.parameters(), config.max_grad_norm)
            self.optimizer.step()

        return loss_rec.item(), math.exp(min(loss_rec.item(), 100)), kld_loss.item(), loss_aux.item(), elbo.item()