コード例 #1
0
def inference(file, checkpoint_path, vocab_file):
    # Build the inference_utils graph.
    g = tf.Graph()
    with g.as_default():
        model = inference_wrapper.InferenceWrapper()
        restore_fn = model.build_graph_from_config(configuration.ModelConfig(),
                                                   checkpoint_path)
    g.finalize()

    # Create the vocabulary.
    vocab = vocabulary.Vocabulary(vocab_file)

    with tf.Session(graph=g) as sess:
        # Load the model from checkpoint.
        restore_fn(sess)

        # Prepare the caption generator. Here we are implicitly using the default
        # beam search parameters. See caption_generator.py for a description of the
        # available beam search parameters.
        generator = caption_generator.CaptionGenerator(model, vocab)

        with tf.gfile.GFile(file, "rb") as f:
            image = f.read()
        captions = generator.beam_search(sess, image)

        results = []
        for i, caption in enumerate(captions):
            # Ignore begin and end words.
            sentence = [vocab.id_to_word(w) for w in caption.sentence[1:-1]]
            sentence = " ".join(sentence)
            results.append("%s (p=%f)" % (sentence, math.exp(caption.logprob)))

        return results
コード例 #2
0
def run():
    """Runs evaluation in a loop, and logs summaries to TensorBoard."""
    # Create the evaluation directory if it doesn't exist.
    eval_dir = FLAGS.eval_dir
    if not tf.gfile.IsDirectory(eval_dir):
        tf.logging.info("Creating eval directory: %s", eval_dir)
        tf.gfile.MakeDirs(eval_dir)

    g = tf.Graph()
    with g.as_default():
        # Build the model for evaluation.
        model_config = configuration.ModelConfig()
        model_config.input_file_pattern = FLAGS.input_file_pattern
        model = show_and_tell_model.ShowAndTellModel(model_config, mode="eval")
        model.build()

        # Create the Saver to restore model Variables.
        saver = tf.train.Saver()

        # Create the summary operation and the summary writer.
        summary_op = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter(eval_dir)

        g.finalize()

        # Run a new evaluation run every eval_interval_secs.
        while True:
            start = time.time()
            tf.logging.info(
                "Starting evaluation at " +
                time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()))
            run_once(model, saver, summary_writer, summary_op)
            time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
            if time_to_next_eval > 0:
                time.sleep(time_to_next_eval)
コード例 #3
0
ファイル: inference.py プロジェクト: colorfulxd/ShowAndTell
def main(_):

    # FLAGS.checkpoint_path = r"C:\Work\08_Project_TellMachine\Output"
    # FLAGS.vocab_file = r"C:\Work\08_Project_TellMachine\Output\word_counts.txt"
    # FLAGS.input_files = r"C:\Work\08_Project_TellMachine\Output\667626_18933d713e.jpg"
    # Build the inference_utils graph.
    g = tf.Graph()
    with g.as_default():
        model = inference_wrapper.InferenceWrapper()
        restore_fn = model.build_graph_from_config(configuration.ModelConfig(),
                                                   FLAGS.checkpoint_path)
    g.finalize()

    # Create the vocabulary.
    vocab = vocabulary.Vocabulary(FLAGS.vocab_file)

    filenames = []
    for file_pattern in FLAGS.input_files.split(","):
        filenames.extend(tf.gfile.Glob(file_pattern))
    tf.logging.info("Running caption generation on %d files matching %s",
                    len(filenames), FLAGS.input_files)

    with tf.Session(graph=g) as sess:
        # Load the model from checkpoint.
        restore_fn(sess)

        # Prepare the caption generator. Here we are implicitly using the default
        # beam search parameters. See caption_generator.py for a description of the
        # available beam search parameters.
        generator = caption_generator.CaptionGenerator(model, vocab)

        for filename in filenames:
            with tf.gfile.GFile(filename, "rb") as f:
                image = f.read()
            captions = generator.beam_search(sess, image)
            print("Captions for image %s:" % os.path.basename(filename))
            for i, caption in enumerate(captions):
                # Ignore begin and end words.
                sentence = [
                    vocab.id_to_word(w) for w in caption.sentence[1:-1]
                ]
                sentence = " ".join(sentence)
                print("  %d) %s (p=%f)" %
                      (i, sentence, math.exp(caption.logprob)))
コード例 #4
0
ファイル: train.py プロジェクト: colorfulxd/ShowAndTell
def main(unused_argv):
    # FLAGS.train_dir = r"C:\Work\08_Project_TellMachine\Output"
    # FLAGS.input_file_pattern =r"C:\Work\08_Project_TellMachine\Output\train-?????-of-00006"
    # FLAGS.inception_checkpoint_file = r"C:\Work\08_Project_TellMachine\Ckpt\inception_v3.ckpt"
    # FLAGS.number_of_steps = 5
    assert FLAGS.input_file_pattern, "--input_file_pattern is required"
    assert FLAGS.train_dir, "--train_dir is required"

    model_config = configuration.ModelConfig()
    model_config.input_file_pattern = FLAGS.input_file_pattern
    model_config.inception_checkpoint_file = FLAGS.inception_checkpoint_file
    training_config = configuration.TrainingConfig()

    # Create training directory.
    train_dir = FLAGS.train_dir
    if not tf.gfile.IsDirectory(train_dir):
        tf.logging.info("Creating training directory: %s", train_dir)
        tf.gfile.MakeDirs(train_dir)

    # Build the TensorFlow graph.
    g = tf.Graph()
    with g.as_default():
        # Build the model.
        model = show_and_tell_model.ShowAndTellModel(
            model_config, mode="train", train_inception=FLAGS.train_inception)
        model.build()

        # Set up the learning rate.
        learning_rate_decay_fn = None
        if FLAGS.train_inception:
            learning_rate = tf.constant(
                training_config.train_inception_learning_rate)
        else:
            learning_rate = tf.constant(training_config.initial_learning_rate)
            if training_config.learning_rate_decay_factor > 0:
                num_batches_per_epoch = (
                    training_config.num_examples_per_epoch /
                    model_config.batch_size)
                decay_steps = int(num_batches_per_epoch *
                                  training_config.num_epochs_per_decay)

                def _learning_rate_decay_fn(learning_rate, global_step):
                    return tf.train.exponential_decay(
                        learning_rate,
                        global_step,
                        decay_steps=decay_steps,
                        decay_rate=training_config.learning_rate_decay_factor,
                        staircase=True)

                learning_rate_decay_fn = _learning_rate_decay_fn

        # Set up the training ops.
        train_op = tf.contrib.layers.optimize_loss(
            loss=model.total_loss,
            global_step=model.global_step,
            learning_rate=learning_rate,
            optimizer=training_config.optimizer,
            clip_gradients=training_config.clip_gradients,
            learning_rate_decay_fn=learning_rate_decay_fn)

        # Set up the Saver for saving and restoring model checkpoints.
        saver = tf.train.Saver(
            max_to_keep=training_config.max_checkpoints_to_keep)

    # Run training.
    tf.contrib.slim.learning.train(train_op,
                                   train_dir,
                                   log_every_n_steps=FLAGS.log_every_n_steps,
                                   graph=g,
                                   global_step=model.global_step,
                                   number_of_steps=FLAGS.number_of_steps,
                                   init_fn=model.init_fn,
                                   saver=saver)
コード例 #5
0
import numpy as np
from scipy.misc import imread
import os
import multiprocessing
import sys
import json
import argparse
from caption_generator import *

from inference_utils import extract_features, extract_image_id, run_inference

from voting import rrv_captions_from_beam

import h5py

model_config = configuration.ModelConfig()
training_config = configuration.TrainingConfig()

FLAGS = None
verbose = True
mode = 'inference'


# Run inference but do beam search in batches for better efficiency...
def run_inference2(sess, features, generator, data, batch_size):
    generator.beam_search2(sess, features, batch_size=batch_size)


def create_annotations(features,
                       image_names,
                       data,
コード例 #6
0
ファイル: train.py プロジェクト: HardLaugh/mynet
def main(_):

    assert FLAGS.file_pattern, "--file_pattern is required"
    assert FLAGS.train_checkpoints, "--train_checkpoints is required"
    assert FLAGS.summaries_dir, "--summaries_dir is required"

    vocab = Vocabulary()

    model_config = configuration.ModelConfig()

    training_config = configuration.TrainingConfig()
    print(FLAGS.learning_rate)
    training_config.initial_learning_rate = FLAGS.learning_rate

    sequence_length = model_config.sequence_length
    batch_size = FLAGS.batch_size

    summaries_dir = FLAGS.summaries_dir
    if not tf.gfile.IsDirectory(summaries_dir):
        tf.logging.info("Creating training directory: %s", summaries_dir)
        tf.gfile.MakeDirs(summaries_dir)

    train_checkpoints = FLAGS.train_checkpoints
    if not tf.gfile.IsDirectory(train_checkpoints):
        tf.logging.info("Creating training directory: %s", train_checkpoints)
        tf.gfile.MakeDirs(train_checkpoints)

    # 数据队列初始化
    input_queue = DataReader(FLAGS.dataset_dir,
                             FLAGS.file_pattern,
                             model_config,
                             batch_size=batch_size)

    g = tf.Graph()
    with g.as_default():
        # 数据队列
        with tf.name_scope(None, 'input_queue'):
            input_images, input_labels = input_queue.read()

        # 模型建立
        model = crnn.CRNN(256, model_config.num_classes, 'train')
        logits = model.build(input_images)

        with tf.name_scope(None, 'loss'):
            loss = tf.reduce_mean(
                tf.nn.ctc_loss(labels=input_labels,
                               inputs=logits,
                               sequence_length=sequence_length *
                               tf.ones(batch_size, dtype=tf.int32)),
                name='compute_loss',
            )
            tf.losses.add_loss(loss)
            total_loss = tf.losses.get_total_loss(False)

        with tf.name_scope(None, 'decoder'):
            decoded, _ = tf.nn.ctc_beam_search_decoder(
                logits,
                sequence_length * tf.ones(batch_size, dtype=tf.int32),
                merge_repeated=False,
            )
            with tf.name_scope(None, 'acurracy'):
                sequence_dist = tf.reduce_mean(
                    tf.edit_distance(tf.cast(decoded[0], tf.int32),
                                     input_labels),
                    name='seq_dist',
                )
            preds = tf.sparse_tensor_to_dense(decoded[0], name='prediction')
            gt_labels = tf.sparse_tensor_to_dense(input_labels,
                                                  name='Ground_Truth')

        # print(len(slim.get_model_variables()))
        # print('>>>>>>>>>>>>>>>>>>>>>>>>>>>')
        # print(len(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)))
        # sys.exit()
        global_step = tf.Variable(initial_value=0,
                                  name="global_step",
                                  trainable=False,
                                  collections=[
                                      tf.GraphKeys.GLOBAL_STEP,
                                      tf.GraphKeys.GLOBAL_VARIABLES
                                  ])

        start_learning_rate = training_config.initial_learning_rate
        learning_rate = tf.train.exponential_decay(
            start_learning_rate,
            global_step,
            decay_steps=training_config.learning_decay_steps,
            decay_rate=training_config.learning_rate_decay_factor,
            staircase=True,
        )

        # summary
        # Add summaries for variables.
        for variable in slim.get_model_variables():
            tf.summary.histogram(variable.op.name, variable)
        tf.summary.scalar(name='Seq_Dist', tensor=sequence_dist)
        tf.summary.scalar(name='global_step', tensor=global_step)
        tf.summary.scalar(name='learning_rate', tensor=learning_rate)
        tf.summary.scalar(name='total_loss', tensor=total_loss)

        # global/secs hook
        globalhook = tf.train.StepCounterHook(
            every_n_steps=FLAGS.log_every_n_steps, )
        # 保存chekpoints的hook
        # saver = tf.train.Saver(max_to_keep=training_config.max_checkpoints_to_keep)
        # saverhook = tf.train.CheckpointSaverHook(
        #     checkpoint_dir=FLAGS.train_checkpoints,
        #     save_steps=2000,
        #     saver=saver,
        # )
        # #保存summaries的hook
        # merge_summary_op = tf.summary.merge_all()
        # summaryhook = tf.train.SummarySaverHook(
        #     save_steps=200,
        #     output_dir=FLAGS.summaries_dir,
        #     summary_op=merge_summary_op,
        # )
        # 训练时需要logging的hook
        tensors_print = {
            'global_step': global_step,
            'loss': loss,
            'Seq_Dist': sequence_dist,
            # 'accurays':accurays,
        }
        loghook = tf.train.LoggingTensorHook(
            tensors=tensors_print,
            every_n_iter=FLAGS.log_every_n_steps,
        )
        # 停止hook
        stophook = tf.train.StopAtStepHook(last_step=FLAGS.number_of_steps)

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        session_config = tf.ConfigProto(log_device_placement=False,
                                        gpu_options=gpu_options)

        # extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        # with tf.control_dependencies(extra_update_ops):
        #     optimizer = tf.train.AdadeltaOptimizer(
        #         learning_rate=learning_rate).minimize(loss=total_loss, global_step=global_step)

        optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate)
        train_op = tf.contrib.training.create_train_op(total_loss=total_loss,
                                                       optimizer=optimizer,
                                                       global_step=global_step)
        # train_op = tf.group([optimizer, total_loss, sequence_dist])
        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_checkpoints,
                hooks=[globalhook, loghook, stophook],
                save_checkpoint_secs=180,
                save_summaries_steps=100,
                config=session_config) as sess:
            while not sess.should_stop():
                oloss, opreds, ogt_labels = sess.run(
                    [train_op, preds, gt_labels])
                accuray = compute_acuracy(opreds, ogt_labels)
                print("accuracy: %9f" % (accuray))
コード例 #7
0
ファイル: bugtest.py プロジェクト: HardLaugh/mynet
def main(_):

    assert FLAGS.file_pattern, "--file_pattern is required"
    assert FLAGS.train_checkpoints, "--train_checkpoints is required"
    assert FLAGS.summaries_dir, "--summaries_dir is required"

    vocab = Vocabulary()

    model_config = configuration.ModelConfig()

    training_config = configuration.TrainingConfig()
    print(FLAGS.learning_rate)
    training_config.initial_learning_rate = FLAGS.learning_rate

    sequence_length = model_config.sequence_length
    batch_size = FLAGS.batch_size

    summaries_dir = FLAGS.summaries_dir
    if not tf.gfile.IsDirectory(summaries_dir):
        tf.logging.info("Creating training directory: %s", summaries_dir)
        tf.gfile.MakeDirs(summaries_dir)

    train_checkpoints = FLAGS.train_checkpoints
    if not tf.gfile.IsDirectory(train_checkpoints):
        tf.logging.info("Creating training directory: %s", train_checkpoints)
        tf.gfile.MakeDirs(train_checkpoints)

    # 数据队列初始化
    input_queue = DataReader(FLAGS.dataset_dir,
                             FLAGS.file_pattern,
                             model_config,
                             batch_size=batch_size)

    g = tf.Graph()
    with g.as_default():
        # 数据队列
        with tf.name_scope(None, 'input_queue'):
            input_images, input_labels = input_queue.read()

        # 模型建立
        model = crnn.CRNN(256, model_config.num_classes, 'train')
        logits = model.build(input_images)

        with tf.name_scope(None, 'loss'):

            loss = tf.reduce_mean(
                tf.nn.ctc_loss(labels=input_labels,
                               inputs=logits,
                               sequence_length=sequence_length *
                               tf.ones(batch_size, dtype=tf.int32)),
                name='compute_loss',
            )
            tf.losses.add_loss(loss)
            total_loss = tf.losses.get_total_loss(False)

        with tf.name_scope(None, 'decoder'):
            decoded, _ = tf.nn.ctc_beam_search_decoder(
                logits,
                sequence_length * tf.ones(batch_size, dtype=tf.int32),
                merge_repeated=False,
            )
            with tf.name_scope(None, 'acurracy'):
                sequence_dist = tf.reduce_mean(
                    tf.edit_distance(tf.cast(decoded[0], tf.int32),
                                     input_labels),
                    name='seq_dist',
                )
            preds = tf.sparse_tensor_to_dense(decoded[0], name='prediction')
            gt_labels = tf.sparse_tensor_to_dense(input_labels,
                                                  name='Ground_Truth')

        global_step = tf.Variable(initial_value=0,
                                  name="global_step",
                                  trainable=False,
                                  collections=[
                                      tf.GraphKeys.GLOBAL_STEP,
                                      tf.GraphKeys.GLOBAL_VARIABLES
                                  ])

        # 训练时需要logging的hook
        tensors_print = {
            'global_step': global_step,
            #'loss': loss,
        }
        loghook = tf.train.LoggingTensorHook(
            tensors=tensors_print,
            every_n_iter=FLAGS.log_every_n_steps,
        )
        # 停止hook
        stophook = tf.train.StopAtStepHook(last_step=FLAGS.number_of_steps)

        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        session_config = tf.ConfigProto(log_device_placement=False,
                                        gpu_options=gpu_options)

        train_op = tf.assign_add(global_step, tf.constant(1))
        session = tf.train.ChiefSessionCreator(
            config=session_config,
            checkpoint_dir=FLAGS.train_checkpoints,
        )

        labels_shape = input_labels.dense_shape
        with tf.train.MonitoredSession(session, hooks=[loghook,
                                                       stophook]) as sess:

            while not sess.should_stop():
                test_logits, test_images, test_shape, _ = \
                        sess.run([logits, input_images, labels_shape, input_labels])
                if test_logits.shape[
                        1] != FLAGS.batch_size or test_images.shape[
                            0] != FLAGS.batch_size or test_shape[
                                0] != FLAGS.batch_size:
                    print("get it!!!!!")
                test_loss = sess.run([loss])
                sess.run(train_op)