def __init__(self, blocks_args=None, global_params=None): super().__init__() assert isinstance(blocks_args, list), 'blocks_args should be a list' assert len(blocks_args) > 0, 'block args must be greater than 0' self._global_params = global_params self._blocks_args = blocks_args # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Batch norm parameters bn_mom = 1 - self._global_params.batch_norm_momentum bn_eps = self._global_params.batch_norm_epsilon # Stem in_channels = 3 # rgb out_channels = round_filters(32, self._global_params) # number of output channels self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Build blocks self._blocks = nn.ModuleList([]) for block_args in self._blocks_args: # Update block input and output filters based on depth multiplier. block_args = block_args._replace( input_filters=round_filters(block_args.input_filters, self._global_params), output_filters=round_filters(block_args.output_filters, self._global_params), num_repeat=round_repeats(block_args.num_repeat, self._global_params) ) # The first block needs to take care of stride and filter size increase. self._blocks.append(MBConvBlock(block_args, self._global_params)) if block_args.num_repeat > 1: block_args = block_args._replace( input_filters=block_args.output_filters, stride=1) for _ in range(block_args.num_repeat - 1): self._blocks.append( MBConvBlock(block_args, self._global_params)) # Head in_channels = block_args.output_filters # output of final block out_channels = round_filters(1280, self._global_params) self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Final linear layer self._avg_pooling = nn.AdaptiveAvgPool2d(1) self._dropout = nn.Dropout(self._global_params.dropout_rate) self._fc = nn.Linear(out_channels, self._global_params.num_classes) self._swish = MemoryEfficientSwish()
def from_pretrained(cls, model_name, advprop=False, num_classes=1000, in_channels=3): model = cls.from_name(model_name, override_params={'num_classes': num_classes}) if in_channels != 3: Conv2d = get_same_padding_conv2d( image_size=model._global_params.image_size) out_channels = round_filters(32, model._global_params) model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) return model