def __init__(self, blocks_args=None, global_params=None): super().__init__() assert isinstance(blocks_args, list), 'blocks_args should be a list' assert len(blocks_args) > 0, 'block args must be greater than 0' self._global_params = global_params self._blocks_args = blocks_args # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Batch norm parameters bn_mom = 1 - self._global_params.batch_norm_momentum bn_eps = self._global_params.batch_norm_epsilon # Stem in_channels = 3 # rgb out_channels = round_filters(32, self._global_params) # number of output channels self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Build blocks self._blocks = nn.ModuleList([]) for block_args in self._blocks_args: # Update block input and output filters based on depth multiplier. block_args = block_args._replace( input_filters=round_filters(block_args.input_filters, self._global_params), output_filters=round_filters(block_args.output_filters, self._global_params), num_repeat=round_repeats(block_args.num_repeat, self._global_params) ) # The first block needs to take care of stride and filter size increase. self._blocks.append(MBConvBlock(block_args, self._global_params)) if block_args.num_repeat > 1: block_args = block_args._replace( input_filters=block_args.output_filters, stride=1) for _ in range(block_args.num_repeat - 1): self._blocks.append( MBConvBlock(block_args, self._global_params)) # Head in_channels = block_args.output_filters # output of final block out_channels = round_filters(1280, self._global_params) self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Final linear layer self._avg_pooling = nn.AdaptiveAvgPool2d(1) self._dropout = nn.Dropout(self._global_params.dropout_rate) self._fc = nn.Linear(out_channels, self._global_params.num_classes) self._swish = MemoryEfficientSwish()
def __init__(self, in_channels, num_anchors, num_layers, pyramid_levels=5, onnx_export=False): super(Regressor, self).__init__() self.num_layers = num_layers self.conv_list = nn.ModuleList( [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) self.bn_list = nn.ModuleList( [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in range(pyramid_levels)]) self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False) self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and ( 0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels if self._block_args.expand_ratio != 1: self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase k = self._block_args.kernel_size s = self._block_args.stride self._depthwise_conv = Conv2d( in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise kernel_size=k, stride=s, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired if self.has_se: num_squeezed_channels = max(1, int( self._block_args.input_filters * self._block_args.se_ratio)) self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) # Output phase final_oup = self._block_args.output_filters self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self._swish = MemoryEfficientSwish()
def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False): super(SeparableConvBlock, self).__init__() if out_channels is None: out_channels = in_channels # Q: whether separate conv # share bias between depthwise_conv and pointwise_conv # or just pointwise_conv apply bias. # A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias. self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels, kernel_size=3, stride=1, groups=in_channels, bias=False) self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1) self.norm = norm if self.norm: # Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3) self.activation = activation if self.activation: self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True, use_p8=False): """ Args: num_channels: conv_channels: first_time: whether the input comes directly from the efficientnet, if True, downchannel it first, and downsample P5 to generate P6 then P7 epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon onnx_export: if True, use Swish instead of MemoryEfficientSwish """ super(BiFPN, self).__init__() self.epsilon = epsilon self.use_p8 = use_p8 # Conv layers self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) if use_p8: self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) # Feature scaling layers self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) if use_p8: self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p8_downsample = MaxPool2dStaticSamePadding(3, 2) self.swish = MemoryEfficientSwish() if not onnx_export else Swish() self.first_time = first_time if self.first_time: self.p5_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p4_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p3_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_to_p6 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), MaxPool2dStaticSamePadding(3, 2) ) self.p6_to_p7 = nn.Sequential( MaxPool2dStaticSamePadding(3, 2) ) if use_p8: self.p7_to_p8 = nn.Sequential( MaxPool2dStaticSamePadding(3, 2) ) self.p4_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) # Weight self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p6_w1_relu = nn.ReLU() self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p5_w1_relu = nn.ReLU() self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p4_w1_relu = nn.ReLU() self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p3_w1_relu = nn.ReLU() self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p4_w2_relu = nn.ReLU() self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p5_w2_relu = nn.ReLU() self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p6_w2_relu = nn.ReLU() self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p7_w2_relu = nn.ReLU() self.attention = attention
def set_swish(self, memory_efficient=True): """Sets swish function as memory efficient (for training) or standard (for export)""" self._swish = MemoryEfficientSwish() if memory_efficient else Swish() for block in self._blocks: block.set_swish(memory_efficient)