コード例 #1
0
    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32,
                                     self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3,
                                 stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom,
                                   eps=bn_eps)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            self._global_params),
                output_filters=round_filters(block_args.output_filters,
                                             self._global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params))
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(
                    MBConvBlock(block_args, self._global_params))

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1,
                                 bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom,
                                   eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, self._global_params.num_classes)
        self._swish = MemoryEfficientSwish()
コード例 #2
0
    def __init__(self, in_channels, num_anchors, num_layers, pyramid_levels=5, onnx_export=False):
        super(Regressor, self).__init__()
        self.num_layers = num_layers

        self.conv_list = nn.ModuleList(
            [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)])
        self.bn_list = nn.ModuleList(
            [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in
             range(pyramid_levels)])
        self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False)
        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
コード例 #3
0
    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (
                    0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup,
                                       kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom,
                                       eps=self._bn_eps)

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,
            # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom,
                                   eps=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(1, int(
                self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup,
                                     out_channels=num_squeezed_channels,
                                     kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels,
                                     out_channels=oup, kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup,
                                    kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup,
                                   momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()
コード例 #4
0
    def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False):
        super(SeparableConvBlock, self).__init__()
        if out_channels is None:
            out_channels = in_channels

        # Q: whether separate conv
        #  share bias between depthwise_conv and pointwise_conv
        #  or just pointwise_conv apply bias.
        # A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias.

        self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels,
                                                      kernel_size=3, stride=1, groups=in_channels, bias=False)
        self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1)

        self.norm = norm
        if self.norm:
            # Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow
            self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3)

        self.activation = activation
        if self.activation:
            self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
コード例 #5
0
    def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True,
                 use_p8=False):
        """

        Args:
            num_channels:
            conv_channels:
            first_time: whether the input comes directly from the efficientnet,
                        if True, downchannel it first, and downsample P5 to generate P6 then P7
            epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon
            onnx_export: if True, use Swish instead of MemoryEfficientSwish
        """
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        self.use_p8 = use_p8

        # Conv layers
        self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        if use_p8:
            self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
            self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)

        # Feature scaling layers
        self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')

        self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)
        if use_p8:
            self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest')
            self.p8_downsample = MaxPool2dStaticSamePadding(3, 2)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

        self.first_time = first_time
        if self.first_time:
            self.p5_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

            self.p5_to_p6 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                MaxPool2dStaticSamePadding(3, 2)
            )
            self.p6_to_p7 = nn.Sequential(
                MaxPool2dStaticSamePadding(3, 2)
            )
            if use_p8:
                self.p7_to_p8 = nn.Sequential(
                    MaxPool2dStaticSamePadding(3, 2)
                )

            self.p4_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

        # Weight
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention
コード例 #6
0
ファイル: attention_model.py プロジェクト: iwzy7071/deepfake
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
     for block in self._blocks:
         block.set_swish(memory_efficient)