コード例 #1
0
ファイル: test.py プロジェクト: leesing9/Crack_drl-RPN
def im_detect(sess, net, im, timers, im_idx=None, nbr_gts=None):

  # Setup image blob
  blobs = {}
  blobs['data'], im_scales, blobs['im_shape_orig'] = get_image_blob(im)
  im_blob = blobs['data']
  blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]])

  # Run drl-RPN
  scores, pred_bboxes, timers, stats \
    = run_drl_rpn(sess, net, blobs, timers, 'test', cfg.DRL_RPN_TEST.BETA,
                  im_idx, nbr_gts)

  return scores, pred_bboxes, timers, stats
コード例 #2
0
ファイル: train_val.py プロジェクト: denguir/tf-drl-rpn-video
    def train_model(self, sess, max_iters):
        # Build data layers for both training and validation set
        self.data_layer = RoIDataLayer(self.roidb, cfg.NBR_CLASSES)
        self.data_layer_val = RoIDataLayer(self.valroidb, cfg.NBR_CLASSES,
                                           True)

        # Construct the computation graph corresponding to the original Faster R-CNN
        # architecture first (and potentially the post-hist module of drl-RPN)
        lr_det_op, train_op, lr_post_op, train_op_post \
          = self.construct_graph(sess)

        # Initialize the variables or restore them from the last snapshot
        rate, last_snapshot_iter, stepsizes, np_paths, ss_paths \
          = self.initialize(sess)

        # We will handle the snapshots ourselves
        self.saver = tf.train.Saver(max_to_keep=100000)

        # Initialize
        self.net.init_rl_train(sess)

        # Setup initial learning rates
        lr_rl = cfg.DRL_RPN_TRAIN.LEARNING_RATE
        lr_det = cfg.TRAIN.LEARNING_RATE
        sess.run(tf.assign(lr_det_op, lr_det))
        if cfg.DRL_RPN.USE_POST:
            lr_post = cfg.DRL_RPN_TRAIN.POST_LR
            sess.run(tf.assign(lr_post_op, lr_post))

        # Sample first beta
        if cfg.DRL_RPN_TRAIN.USE_POST:
            betas = cfg.DRL_RPN_TRAIN.POST_BETAS
        else:
            betas = cfg.DRL_RPN_TRAIN.BETAS
        beta_idx = 0
        beta = betas[beta_idx]

        # Setup drl-RPN timers
        timers = {
            'init': Timer(),
            'fulltraj': Timer(),
            'upd-obs-vol': Timer(),
            'upd-seq': Timer(),
            'upd-rl': Timer(),
            'action-rl': Timer(),
            'coll-traj': Timer(),
            'run-drl-rpn': Timer(),
            'train-drl-rpn': Timer()
        }

        # Create StatCollector (tracks various RL training statistics)
        stat_strings = [
            'reward', 'rew-done', 'traj-len', 'frac-area', 'gt >= 0.5 frac',
            'gt-IoU-frac'
        ]
        sc = StatCollector(max_iters, stat_strings)

        timer = Timer()
        iter = 0
        snapshot_add = 0
        while iter < max_iters:

            # Get training data, one batch at a time (assumes batch size 1)
            blobs = self.data_layer.forward()

            # Allows the possibility to start at arbitrary image, rather
            # than always starting from first image in dataset. Useful if
            # want to load parameters and keep going from there, rather
            # than having those and encountering visited images again.
            iter, max_iters, snapshot_add, do_continue \
              = self._check_if_continue(iter, max_iters, snapshot_add)
            if do_continue:
                continue

            if not cfg.DRL_RPN_TRAIN.USE_POST:

                # Potentially update drl-RPN learning rate
                if (iter + 1) % cfg.DRL_RPN_TRAIN.STEPSIZE == 0:
                    lr_rl *= cfg.DRL_RPN_TRAIN.GAMMA

                # Run drl-RPN in training mode
                timers['run-drl-rpn'].tic()
                stats = run_drl_rpn(sess,
                                    self.net,
                                    blobs,
                                    timers,
                                    mode='train',
                                    beta=beta,
                                    im_idx=None,
                                    extra_args=lr_rl)
                timers['run-drl-rpn'].toc()

                if (iter + 1) % cfg.DRL_RPN_TRAIN.BATCH_SIZE == 0:
                    print(
                        "\n##### DRL-RPN BATCH GRADIENT UPDATE - START ##### \n"
                    )
                    print('iter: %d / %d' % (iter + 1, max_iters))
                    print('lr-rl: %f' % lr_rl)
                    timers['train-drl-rpn'].tic()
                    self.net.train_drl_rpn(sess, lr_rl, sc, stats)
                    timers['train-drl-rpn'].toc()
                    sc.print_stats()
                    print('TIMINGS:')
                    print('runnn-drl-rpn: %.4f' %
                          timers['run-drl-rpn'].get_avg())
                    print('train-drl-rpn: %.4f' %
                          timers['train-drl-rpn'].get_avg())
                    print(
                        "\n##### DRL-RPN BATCH GRADIENT UPDATE - DONE ###### \n"
                    )

                    # Also sample new beta for next batch
                    beta_idx += 1
                    beta_idx %= len(betas)
                    beta = betas[beta_idx]
                else:
                    sc.update(0, stats)

                # At this point we assume that an RL-trajectory has been performed.
                # We next train detector with drl-RPN running in deterministic mode.
                # Potentially train detector component of network
                if cfg.DRL_RPN_TRAIN.DET_START >= 0 and \
                  iter >= cfg.DRL_RPN_TRAIN.DET_START:

                    # Run drl-RPN in deterministic mode
                    net_conv, rois_drl_rpn, gt_boxes, im_info, timers, _ \
                      = run_drl_rpn(sess, self.net, blobs, timers, mode='train_det',
                                    beta=beta, im_idx=None)

                    # Learning rate
                    if (iter + 1) % cfg.TRAIN.STEPSIZE[0] == 0:
                        lr_det *= cfg.TRAIN.GAMMA
                        sess.run(tf.assign(lr_det_op, lr_det))

                    timer.tic()
                    # Train detector part
                    loss_cls, loss_box, tot_loss \
                      = self.net.train_step_det(sess, train_op, net_conv, rois_drl_rpn,
                                                gt_boxes, im_info)
                    timer.toc()

                    # Display training information
                    self._print_det_loss(iter, max_iters, tot_loss, loss_cls,
                                         loss_box, lr_det, timer)

            # Train post-hist module AFTER we have trained rest of drl-RPN! Specifically
            # once rest of drl-RPN has been trained already, copy those weights into
            # the folder of pretrained weights and rerun training with those as initial
            # weights, which will then train only the posterior-history module
            else:

                # The very first time we need to assign the ordinary detector weights
                # as starting point
                if iter == 0:
                    self.net.assign_post_hist_weights(sess)

                # Sample beta
                beta = betas[beta_idx]
                beta_idx += 1
                beta_idx %= len(betas)

                # Run drl-RPN in deterministic mode
                net_conv, rois_drl_rpn, gt_boxes, im_info, timers, cls_hist \
                  = run_drl_rpn(sess, self.net, blobs, timers, mode='train_det',
                                beta=beta, im_idx=None)

                # Learning rate (assume only one learning rate iter for now!)
                if (iter + 1) % cfg.DRL_RPN_TRAIN.POST_SS[0] == 0:
                    lr_post *= cfg.TRAIN.GAMMA
                    sess.run(tf.assign(lr_post_op, lr_post))

                # Train post-hist detector part
                tot_loss = self.net.train_step_post(sess, train_op_post,
                                                    net_conv, rois_drl_rpn,
                                                    gt_boxes, im_info,
                                                    cls_hist)

                # Display training information
                self._print_det_loss(iter, max_iters, tot_loss, None, None,
                                     lr_post, timer, 'post-hist')

            # Snapshotting
            if (iter + 1) % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = iter + 1
                ss_path, np_path = self.snapshot(sess, iter + 1 + snapshot_add)
                np_paths.append(np_path)
                ss_paths.append(ss_path)

                # Remove the old snapshots if there are too many
                if len(np_paths) > cfg.TRAIN.SNAPSHOT_KEPT:
                    self.remove_snapshot(np_paths, ss_paths)

            # Increase iteration counter
            iter += 1

        # Potentially save one last time
        if last_snapshot_iter != iter:
            self.snapshot(sess, iter + snapshot_add)