def model(x, y, params): best_params = grid_search_reg(x, y, SVR(), params) # It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. kernel = best_params['kernel'] C = best_params['C'] cls = SVR(kernel=kernel, C=C) return cls
def model(x, y, params): best_params = grid_search_reg(x, y, RandomForestRegressor(), params) # criterion = best_params['criterion'] max_depth = best_params['max_depth'] n_estimators = best_params['n_estimators'] cls = RandomForestRegressor(max_depth=max_depth, n_estimators=n_estimators, random_state=random_state) return cls
def model(x, y, params): best_params = grid_search_reg(x, y, GradientBoostingRegressor(), params) learning_rate = best_params['learning_rate'] subsample = best_params['subsample'] max_depth = best_params['max_depth'] n_estimators = best_params['n_estimators'] cls = GradientBoostingRegressor(learning_rate=learning_rate, subsample=subsample, max_depth=max_depth, n_estimators=n_estimators, random_state=random_state) return cls
def model(x, y, params): best_params = grid_search_reg(x, y, LGBMRegressor(), params) learning_rate = best_params['learning_rate'] num_leaves = best_params['num_leaves'] subsample = best_params['subsample'] colsample_bytree = best_params['colsample_bytree'] max_depth = best_params['max_depth'] n_estimators = best_params['n_estimators'] cls = LGBMRegressor(learning_rate=learning_rate, num_leaves=num_leaves, subsample=subsample, colsample_bytree=colsample_bytree, max_depth=max_depth, n_estimators=n_estimators, random_state=random_state) return cls
def model(x, y, params): best_params = grid_search_reg(x, y, XGBRegressor(objective='reg:squarederror'), params) learning_rate = best_params['learning_rate'] num_leaves = best_params['num_leaves'] subsample = best_params['subsample'] colsample_bytree = best_params['colsample_bytree'] max_depth = best_params['max_depth'] n_estimators = best_params['n_estimators'] cls = XGBRegressor(learning_rate=learning_rate, num_leaves=num_leaves, subsample=subsample, colsample_bytree=colsample_bytree, max_depth=max_depth, n_estimators=n_estimators, random_state=random_state, objective='reg:squarederror') return cls