コード例 #1
0
ファイル: refinenet.py プロジェクト: ahsanMah/pixel-msma
    def __init__(self, filters, activation, y_conditioned=False, splits=None):
        super(RefineNet, self).__init__()
        self.in_shape = None

        # Boolean is True when conditional information is concatenated to x
        self.y_conditioned = y_conditioned
        self.splits = splits

        self.increase_channels = layers.Conv2D(filters,
                                               kernel_size=3,
                                               padding="same")

        self.preact_1 = ConditionalFullPreActivationBlock(activation,
                                                          filters,
                                                          kernel_size=3)
        # FIXME: In this second preactivation block we used dilation=1, but it should have been 2
        self.preact_2 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          pooling=True,
                                                          dilation=2,
                                                          padding=2)

        self.preact_3 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          dilation=2,
                                                          padding=2)

        self.preact_4 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          dilation=4,
                                                          padding=4)

        self.refine_block_1 = RefineBlock(
            activation,
            filters,
            n_blocks_crp=2,
            n_blocks_begin_rcu=2,
            n_blocks_end_rcu=3,
        )
        self.refine_block_2 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)
        self.refine_block_3 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)
        self.refine_block_4 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)

        self.norm = ConditionalInstanceNormalizationPlusPlus2D()
        self.activation = activation
        self.decrease_channels = None
コード例 #2
0
ファイル: resnet.py プロジェクト: bruinxiong/NCSN-TF2.0
    def __init__(self, filters, activation):
        super(ResNet, self).__init__()

        self.increase_channels = layers.Conv2D(filters,
                                               kernel_size=3,
                                               padding='same')

        self.res_enc1 = ConditionalResidualBlock(activation,
                                                 filters,
                                                 is_encoder=True)
        self.res_enc2 = ConditionalResidualBlock(activation,
                                                 filters * 2,
                                                 dilation=2,
                                                 is_encoder=True,
                                                 resize=True)
        self.res_enc3 = ConditionalResidualBlock(activation,
                                                 filters * 2,
                                                 dilation=2,
                                                 is_encoder=True)
        self.res_enc4 = ConditionalResidualBlock(activation,
                                                 filters * 4,
                                                 dilation=2,
                                                 is_encoder=True,
                                                 resize=True)
        self.res_enc5 = ConditionalResidualBlock(activation,
                                                 filters * 4,
                                                 dilation=2,
                                                 is_encoder=True)

        self.res_dec1 = ConditionalResidualBlock(activation,
                                                 filters * 4,
                                                 dilation=2,
                                                 is_encoder=False)
        self.res_dec2 = ConditionalResidualBlock(activation,
                                                 filters * 4,
                                                 dilation=2,
                                                 is_encoder=False,
                                                 resize=True)
        self.res_dec3 = ConditionalResidualBlock(activation,
                                                 filters * 2,
                                                 dilation=2,
                                                 is_encoder=False)
        self.res_dec4 = ConditionalResidualBlock(activation,
                                                 filters * 2,
                                                 dilation=2,
                                                 is_encoder=False,
                                                 resize=True)
        self.res_dec5 = ConditionalResidualBlock(activation,
                                                 filters,
                                                 is_encoder=False)

        self.norm = ConditionalInstanceNormalizationPlusPlus2D()
        self.activation = activation
        self.decrease_channels = None
コード例 #3
0
ファイル: refinenet.py プロジェクト: bruinxiong/NCSN-TF2.0
    def __init__(self, filters, activation):
        super(RefineNet, self).__init__()
        self.in_shape = None

        self.increase_channels = layers.Conv2D(filters,
                                               kernel_size=3,
                                               padding='same')

        self.preact_1 = ConditionalFullPreActivationBlock(activation,
                                                          filters,
                                                          kernel_size=3)
        # FIXME: In this second preactivation block we used dilation=1, but it should have been 2
        self.preact_2 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          pooling=True)

        self.preact_3 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          dilation=2,
                                                          padding=2)
        self.preact_4 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          dilation=4,
                                                          padding=4)

        self.refine_block_1 = RefineBlock(activation,
                                          filters,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2,
                                          n_blocks_end_rcu=3)
        self.refine_block_2 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)
        self.refine_block_3 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)
        self.refine_block_4 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)

        self.norm = ConditionalInstanceNormalizationPlusPlus2D()
        self.activation = activation
        self.decrease_channels = None
コード例 #4
0
ファイル: resnet.py プロジェクト: bruinxiong/NCSN-TF2.0
    def __init__(self,
                 activation,
                 filters,
                 is_encoder,
                 kernel_size=3,
                 dilation=1,
                 resize=False):
        super(ConditionalResidualBlock, self).__init__()

        self.norm1 = ConditionalInstanceNormalizationPlusPlus2D()
        self.norm2 = ConditionalInstanceNormalizationPlusPlus2D()
        self.activation = activation
        self.resize = resize
        self.filters = filters
        self.is_encoder = is_encoder
        if is_encoder:
            self.conv1 = layers.Conv2D(filters,
                                       kernel_size,
                                       dilation_rate=(dilation, dilation),
                                       padding="same")
            self.conv2 = layers.Conv2D(filters,
                                       kernel_size,
                                       dilation_rate=(dilation, dilation),
                                       padding="same")
        else:
            self.conv1 = layers.Conv2DTranspose(filters,
                                                kernel_size,
                                                dilation_rate=(dilation,
                                                               dilation),
                                                padding="same")
            self.conv2 = layers.Conv2DTranspose(filters,
                                                kernel_size,
                                                dilation_rate=(dilation,
                                                               dilation),
                                                padding="same")
        self.adjust_skip = None
コード例 #5
0
ファイル: refinenet.py プロジェクト: ahsanMah/pixel-msma
    def __init__(self, filters, activation, splits, y_conditioned=False):
        super(MaskedRefineNet, self).__init__()
        self.in_shape = None
        self.filters = filters

        # Describes how to split the conditioning information
        # Assumes x is concatenated with its pixel-wise conditioning info
        self.splits = splits

        # Concatenate x,y too feed into RefineNet block
        # Encourages local per-pixel conditioning
        self.y_conditioned = y_conditioned

        # Filters used for every channel when dotting
        # dotting with conditioning block
        self.conditional_embedding_size = 256

        self.increase_channels = layers.Conv2D(filters,
                                               kernel_size=3,
                                               padding="same")

        self.preact_1 = ConditionalFullPreActivationBlock(activation,
                                                          filters,
                                                          kernel_size=3)
        # FIXME: In this second preactivation block we used dilation=1, but it should have been 2
        self.preact_2 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          pooling=True)

        self.preact_3 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          dilation=2,
                                                          padding=2)
        self.preact_4 = ConditionalFullPreActivationBlock(activation,
                                                          filters * 2,
                                                          kernel_size=3,
                                                          dilation=4,
                                                          padding=4)

        self.refine_block_1 = RefineBlock(
            activation,
            filters,
            n_blocks_crp=2,
            n_blocks_begin_rcu=2,
            n_blocks_end_rcu=3,
        )
        self.refine_block_2 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)
        self.refine_block_3 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)
        self.refine_block_4 = RefineBlock(activation,
                                          filters * 2,
                                          n_blocks_crp=2,
                                          n_blocks_begin_rcu=2)

        self.norm = ConditionalInstanceNormalizationPlusPlus2D()
        self.activation = activation
        self.decrease_channels = None
        self.depth_extension = layers.Conv2D(
            self.conditional_embedding_size * self.splits[0],
            kernel_size=3,
            padding="same",
        )

        # Added for conditioning block
        self.increase_conditional_channels = layers.Conv2D(filters,
                                                           kernel_size=3,
                                                           padding="same")
        # self.conditional_block = FullPreActivationBlock(activation, self.conditional_embedding_size*splits[0], kernel_size=3)
        self.conditional_block = FullPreActivationBlock(
            activation,
            self.conditional_embedding_size,
            kernel_size=3,
            dilation=2,
            padding=2,
        )

        self.pool = GlobalAveragePooling2D(data_format="channels_last")
        self.dot = tf.keras.layers.Dot(axes=(4, 1), name="condition_dot")