コード例 #1
0
def train():

    dirname = os.path.dirname(__file__)
    output_dirname = os.path.join(dirname, 'results')

    try:
        os.stat(output_dirname)
    except:
        os.mkdir(output_dirname)

    file_name = 'resources/dataset_train.csv'
    dirname = os.path.dirname(__file__)
    file_name = os.path.join(dirname, file_name)

    d = DataSet(file_name)
    d.loadDataSet()

    to_remove = [
        d.data_set[0].index('Index'),
        d.data_set[0].index('First Name'),
        d.data_set[0].index('Last Name'),
        d.data_set[0].index('Birthday'),
        d.data_set[0].index('Best Hand'),
        d.data_set[0].index('Hogwarts House'),

        # Tests 7/10/18
        d.data_set[0].index('Arithmancy'),
        d.data_set[0].index('Defense Against the Dark Arts'),
        d.data_set[0].index('Divination'),
        d.data_set[0].index('Muggle Studies'),
        d.data_set[0].index('History of Magic'),
        d.data_set[0].index('Transfiguration'),
        d.data_set[0].index('Potions'),
        d.data_set[0].index('Care of Magical Creatures'),
        d.data_set[0].index('Charms'),
        d.data_set[0].index('Flying'),
    ]

    X = np.array([[
        d.data_set[i][j] for j in range(len(d.data_set[0]))
        if j not in to_remove
    ] for i in range(len(d.data_set))])
    features = X[0, :]
    X = convert_to_float(X[1:, ])

    y_col_nb = d.data_set[0].index('Hogwarts House')
    y = np.array(d.extractColumn(y_col_nb)[1:])

    m = MeanImputation(X)
    m.train()
    m.transform()

    sc = Scaling(X)
    sc.train()
    sc.transform()

    l = LogisticRegression(X=X, y=y, optimizer_params={'alpha': 0.5, 'n': 50})
    l.train()

    return features, l.beta
コード例 #2
0
ファイル: Run.py プロジェクト: MikhailAristov/NNPraktikum
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()
    lrPred = myLRClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
    
    print("\nResult of the Logistic Regression recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)    
    evaluator.printAccuracy(data.testSet, lrPred)
コード例 #3
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    myLogisticRegressionClassifier = LogisticRegression(data.trainingSet,
                                                        data.validationSet,
                                                        data.testSet,
                                                        learningRate=0.001,
                                                        epochs=50,
                                                        error='mse')

    # Train the classifiers
    print("=========================")
    print("Training..")

    #print("\nStupid Classifier has been training..")
    #myStupidClassifier.train()
    #print("Done..")

    #print("\nPerceptron has been training..")
    #myPerceptronClassifier.train()
    #print("Done..")

    print("\nLogistic Regression Classifier has been training..")
    myLogisticRegressionClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    #stupidPred = myStupidClassifier.evaluate()
    #perceptronPred = myPerceptronClassifier.evaluate()
    LogisticRegressionPred = myLogisticRegressionClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    #print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    #evaluator.printAccuracy(data.testSet, stupidPred)

    #print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    #evaluator.printAccuracy(data.testSet, perceptronPred)

    print("Result of the Logistic Regression:")
    evaluator.printAccuracy(data.testSet, LogisticRegressionPred)
コード例 #4
0
ファイル: Run.py プロジェクト: aldemel/NNPraktikum
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
#    myStupidClassifier = StupidRecognizer(data.trainingSet,
#                                          data.validationSet,
#                                          data.testSet)
    # Uncomment this to make your Perceptron evaluated
    # myPerceptronClassifier = Perceptron(data.trainingSet,
    #                                     data.validationSet,
    #                                     data.testSet,
    #                                     learningRate=0.005,
    #                                     epochs=30)

    myNeuralNetwork = LogisticRegression(data.trainingSet,
                                         data.validationSet,
                                         data.testSet)
     # Train the classifiers
    print("=========================")
    print("Training..")

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")

    print("\nNeural Network training..")
    #myPerceptronClassifier.train()
    myNeuralNetwork.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    # Uncomment this to make your Perceptron evaluated
    # perceptronPred = myPerceptronClassifier.evaluate()
    neuralPred = myNeuralNetwork.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
#    evaluator.printComparison(data.testSet, perceptronPred)
#    Uncomment this to make your Perceptron evaluated
    # evaluator.printAccuracy(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, neuralPred)

    # evaluator.printConfusionMatrix(data.testSet, perceptronPred)
    evaluator.printConfusionMatrix(data.testSet, neuralPred)
コード例 #5
0
ファイル: Run.py プロジェクト: DominikSauter/NNPraktikum02
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)

    # parameters
    learnRate = 0.005
    maxEpochs = 20
    #epochNumber = 30

    xEpochs = []
    yAccuracyPerceptron = []
    yAccuracyLogistic = []
    # loop for gathering data for graph plotting
    for epochNumber in xrange(1, maxEpochs + 1):

        myPerceptronClassifier = Perceptron(
            data.trainingSet,
            data.validationSet,
            data.testSet,
            learningRate=learnRate,  #0.005,
            epochs=epochNumber)
        # Uncomment this to run Logistic Neuron Layer
        myLRClassifier = LogisticRegression(
            data.trainingSet,
            data.validationSet,
            data.testSet,
            learningRate=learnRate,  #0.005,
            epochs=epochNumber  #30
        )

        # Train the classifiers
        print("=========================")
        print("Training..")

        print("\nStupid Classifier has been training..")
        myStupidClassifier.train()
        print("Done..")

        print("\nPerceptron has been training..")
        myPerceptronClassifier.train()
        print("Done..")

        print("\nLogistic Regression has been training..")
        myLRClassifier.train()
        print("Done..")

        # Do the recognizer
        # Explicitly specify the test set to be evaluated
        stupidPred = myStupidClassifier.evaluate()
        perceptronPred = myPerceptronClassifier.evaluate()
        lrPred = myLRClassifier.evaluate()

        # Report the result
        print("=========================")
        evaluator = Evaluator()

        print("Result of the stupid recognizer:")
        #evaluator.printComparison(data.testSet, stupidPred)
        evaluator.printAccuracy(data.testSet, stupidPred)

        print("\nResult of the Perceptron recognizer:")
        #evaluator.printComparison(data.testSet, perceptronPred)
        evaluator.printAccuracy(data.testSet, perceptronPred)

        print("\nResult of the Logistic Regression recognizer:")
        #evaluator.printComparison(data.testSet, lrPred)
        evaluator.printAccuracy(data.testSet, lrPred)

        # accumulate plotting data
        xEpochs.append(epochNumber)
        yAccuracyPerceptron.append(
            accuracy_score(data.testSet.label, perceptronPred) * 100)
        yAccuracyLogistic.append(
            accuracy_score(data.testSet.label, lrPred) * 100)

        # === end of for loop ===

    # plot the graph
    plt.plot(xEpochs, yAccuracyPerceptron, marker='o', label='Perceptron')
    plt.plot(xEpochs,
             yAccuracyLogistic,
             marker='o',
             color='r',
             label='Logistic Neuron')
    plt.xlabel('Number of epochs')
    plt.ylabel('Accuracy [%]')
    plt.title(
        'Performance on different epochs\n(using: testSet | learningRate: ' +
        str(learnRate) + ')')
    #plt.legend()
    plt.legend(loc=4)
    #plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)
    #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.show()
コード例 #6
0
ファイル: Run.py プロジェクト: hutec/NNPraktikum
def classify_one():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                   one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    myStupidClassifier = StupidRecognizer(data.training_set,
                                          data.validation_set,
                                          data.test_set)

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    myPerceptronClassifier = Perceptron(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.005,
                                        epochs=10)

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    myLRClassifier = LogisticRegression(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.20,
                                        epochs=30)

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    lrPred = myLRClassifier.evaluate()

    # Logistic Regression
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.30,
                                           epochs=50)

    print("\nMultilayer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.test_set, stupidPred)

    print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, perceptronPred)

    print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)


    # Draw
    plot = PerformancePlot("Logistic Regression")
    plot.draw_performance_epoch(myLRClassifier.performances,
                                myLRClassifier.epochs)
コード例 #7
0
ファイル: Run.py プロジェクト: hutec/NNPraktikum
def classify_one():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      one_hot=True,
                      target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                   one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    myStupidClassifier = StupidRecognizer(data.training_set,
                                          data.validation_set, data.test_set)

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    myPerceptronClassifier = Perceptron(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.005,
                                        epochs=10)

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    myLRClassifier = LogisticRegression(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.20,
                                        epochs=30)

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    lrPred = myLRClassifier.evaluate()

    # Logistic Regression
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.30,
                                           epochs=50)

    print("\nMultilayer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.test_set, stupidPred)

    print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, perceptronPred)

    print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    # Draw
    plot = PerformancePlot("Logistic Regression")
    plot.draw_performance_epoch(myLRClassifier.performances,
                                myLRClassifier.epochs)
コード例 #8
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    mylogisticClassifier = LogisticRegression(data.trainingSet,
                                              data.validationSet,
                                              data.testSet,
                                              learningRate=0.005,
                                              epochs=30)
    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nLogsticregression has been training..")
    mylogisticClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = mylogisticClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\n Result of the Logsticregression recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
    for i in range(2):
        for j in range(2):
            learningRate = (i + 1) * 0.002
            epochs = (j + 1) * 20

            mylogisticClassifier = LogisticRegression(
                data.trainingSet,
                data.validationSet,
                data.testSet,
                learningRate=learningRate,
                epochs=epochs)

            # Train the classifiers
            print("=========================")
            print("learning rate :" + str(learningRate))
            print("epoch :" + str(epochs))
            print("Training..")

            print("\nLogsticregression has been training..")
            mylogisticClassifier.train()
            print("Done..")

            # Do the recognizer
            # Explicitly specify the test set to be evaluated
            perceptronPred = mylogisticClassifier.evaluate()

            # Report the result
            print("=========================")
            evaluator = Evaluator()

            print("\n Result of the Logsticregression recognizer:")
            # evaluator.printComparison(data.testSet, perceptronPred)
            evaluator.printAccuracy(data.testSet, perceptronPred)
コード例 #9
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=True)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)

    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()
    lrPred = myLRClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)

    print("\nResult of the Logistic Regression recognizer:")
    #evaluator.printComparison(data.testSet, lrPred)
    evaluator.printAccuracy(data.testSet, lrPred)

    # Draw
    plot = PerformancePlot("Logistic Regression validation")
    plot.draw_performance_epoch(myLRClassifier.performances,
                                myLRClassifier.epochs)