コード例 #1
0
def __get_label__(args, params):

    with tf.Session() as sess:
        # Obtain the test labels
        dataset = mnist_dataset.train(args.data_dir)
        dataset = dataset.map(lambda img, lab: lab)
        dataset = dataset.batch(params.train_size)
        labels_tensor = dataset.make_one_shot_iterator().get_next()
        labels = sess.run(labels_tensor)

    return labels
コード例 #2
0
def train_embedding_fn(data_dir, params):
    """Compute embedding of the training set,remember:No shuffle!!! Need to keep order with labels

    Args:
        data_dir: (string) path to the data directory
        params: (Params) contains hyperparameters of the model (ex: `params.num_epochs`)
    """
    dataset = mnist_dataset.train(data_dir)
    dataset = dataset.batch(params.batch_size)
    dataset = dataset.prefetch(
        1)  # make sure you always have one batch ready to serve
    return dataset
コード例 #3
0
def train_input_fn(data_dir, params):
    """Train input function for the MNIST dataset.

    Args:
        data_dir: (string) path to the data directory
        params: (Params) contains hyperparameters of the model (ex: `params.num_epochs`)
    """
    dataset = mnist_dataset.train(data_dir)
    dataset = dataset.shuffle(params.train_size)
    dataset = dataset.repeat(params.num_epochs)  # repeat for multiple epochs
    dataset = dataset.batch(params.batch_size)
    dataset = dataset.prefetch(
        1)  # make sure you always have one batch ready to serve
    return dataset