コード例 #1
0
    def _extract_backbone(self):
        """extract feature map from backbone.
        """
        if self.backbone == 'large':
            from model.mobilenet_v3_large import MobileNetV3_Large

            model = MobileNetV3_Large(self.shape, self.n_class).build()
            layer_name8 = 'batch_normalization_13'
            layer_name16 = 'add_5'
        elif self.backbone == 'small':
            from model.mobilenet_v3_small import MobileNetV3_Small

            model = MobileNetV3_Small(self.shape, self.n_class).build()
            layer_name8 = 'batch_normalization_7'
            layer_name16 = 'add_2'
        else:
            raise Exception('Invalid backbone: {}'.format(self.backbone))

        if self.weights is not None:
            model.load_weights(self.weights)

        inputs= model.input
        # 1/8 feature map.
        out_feature8 = model.get_layer(layer_name8).output
        # 1/16 feature map.
        out_feature16 = model.get_layer(layer_name16).output

        return inputs, out_feature8, out_feature16
コード例 #2
0
ファイル: LR_ASPP.py プロジェクト: Tnghia9001/UIT_CAR
    def build(self, plot=False):
        """build Lite R-ASPP.

        # Arguments
            plot: Boolean, weather to plot model.

        # Returns
            model: Model, model.
        """
        from model.mobilenet_v3_small import MobileNetV3_Small
        model = MobileNetV3_Small(self.shape, 1, alpha=1.0,
                                  include_top=False).build()
        inputs = model.input

        # x = model.get_layer('activation_25').output
        x = model.get_layer('global_average_pooling2d_10').output
        x = Dropout(0.5)(x)
        # x = Flatten()(x)
        x = Dense(100, activation='elu')(x)
        x = Dropout(0.5)(x)
        x = Dense(50, activation='elu')(x)
        x = Dense(10, activation='elu')(x)
        x = Dense(1)(x)

        model = Model(inputs=inputs, outputs=x)

        if plot:
            plot_model(model, to_file='images/LR_ASPP.png', show_shapes=True)

        return model
コード例 #3
0
def pre(img, save_model = False):

    global model
    global model_shape
    if model is None:
        with open('config/config.json', 'r') as f:
            cfg = json.load(f)

        save_dir = cfg['save_dir']
        model_shape = (int(cfg['height']), int(cfg['width']), 3)
        n_class = int(cfg['class_number'])
        batch = int(cfg['batch'])

        if not os.path.exists(save_dir):
            os.mkdir(save_dir)

        if cfg['model'] == 'large':
            from model.mobilenet_v3_large import MobileNetV3_Large
            model = MobileNetV3_Large(model_shape, n_class).build()
        if cfg['model'] == 'small':
            from model.mobilenet_v3_small import MobileNetV3_Small
            model = MobileNetV3_Small(model_shape, n_class).build()

        if cfg['model'] == 'mymodel':
            from model.my_model import MyModel
            model = MyModel(model_shape, n_class).build()

        if cfg['model'] == 'v2':
            from model.mobilenet_v2 import MyModel
            model = MyModel(model_shape, n_class).build()


        pre_weights = "save/v3_weights0.87-0.87.h5"#cfg['weights']
        if pre_weights and os.path.exists(pre_weights):
            model.load_weights(pre_weights, by_name=True)
            print("------------------load pre model!!!!!")

    if(save_model):
        print("Finish save.")
        model.save('save/model_all.h5')

    # 预处理
    img = cv2.resize(img, model_shape[:2])
    img = img*1. / 255



    pre = model.predict(np.array([img]))
    #print("pre: ",pre,np.argmax(pre[0]))

    #pre_cate = np.argmax(pre[0])
    return pre
コード例 #4
0
def train():
    with open('config/config.json', 'r') as f:
        cfg = json.load(f)

    save_dir = cfg['save_dir']
    shape = (int(cfg['height']), int(cfg['width']), 3)
    n_class = int(cfg['class_number'])
    batch = int(cfg['batch'])

    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if cfg['model'] == 'large':
        from model.mobilenet_v3_large import MobileNetV3_Large
        model = MobileNetV3_Large(shape, n_class).build()
    if cfg['model'] == 'small':
        from model.mobilenet_v3_small import MobileNetV3_Small
        model = MobileNetV3_Small(shape, n_class).build()

    pre_weights = cfg['weights']
    if pre_weights and os.path.exists(pre_weights):
        model.load_weights(pre_weights, by_name=True)

    opt = Adam(lr=float(cfg['learning_rate']))
    earlystop = EarlyStopping(monitor='val_acc',
                              patience=5,
                              verbose=0,
                              mode='auto')
    model.compile(loss='categorical_crossentropy',
                  optimizer=opt,
                  metrics=['accuracy'])

    train_generator, validation_generator, count1, count2 = generate(
        batch, shape[:2], cfg['train_dir'], cfg['eval_dir'])

    hist = model.fit_generator(train_generator,
                               validation_data=validation_generator,
                               steps_per_epoch=count1 // batch,
                               validation_steps=count2 // batch,
                               epochs=cfg['epochs'],
                               callbacks=[earlystop])

    df = pd.DataFrame.from_dict(hist.history)
    df.to_csv(os.path.join(save_dir, 'hist.csv'),
              encoding='utf-8',
              index=False)
    model.save_weights(
        os.path.join(save_dir, '{}_weights.h5'.format(cfg['model'])))
コード例 #5
0
input_size = 32
model_path = "weights/"
shape = (input_size, input_size, 3)
classes = 10
alpha = 0.2

message = "Input size : 32 x 32"
label = [
    'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
    'ship', 'truck'
]

# model load
print("V3_32 Model loading...")
model = MobileNetV3_Small(shape, classes, alpha).build()
model.load_weights(path + 'v3_32.h5')


def main():
    camera_width = 352
    camera_height = 288
    fps = ""
    flag_score = False
    elapsedTime = 0

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FPS, 40)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
コード例 #6
0
def train():
    with open('config/config.json', 'r') as f:
        cfg = json.load(f)

    save_dir = cfg['save_dir']
    shape = (int(cfg['height']), int(cfg['width']))
    n_class = int(cfg['class_number'])
    batch = int(cfg['batch'])

    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    train_images, train_labels, test_images, test_labels = load_images()

    if cfg['model'] == 'large':
        from model.mobilenet_v3_large import MobileNetV3_Large
        model = MobileNetV3_Large(train_images[0].shape,
                                  n_class).build(shape=shape)
    if cfg['model'] == 'small':
        from model.mobilenet_v3_small import MobileNetV3_Small
        model = MobileNetV3_Small(train_images[0].shape,
                                  n_class).build(shape=shape)

    optimizer = build_optimizer(learning_rate=float(cfg['learning_rate']),
                                momentum=0.9)
    # earlystop = EarlyStopping(monitor='val_accuracy', patience=5, verbose=0, mode='auto')
    checkpoint = ModelCheckpoint(filepath=os.path.join(
        save_dir, '{}_weights.h5'.format(cfg['model'])),
                                 monitor='val_acc',
                                 save_best_only=True,
                                 save_weights_only=True)

    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    model.summary()

    # data augmentation
    datagen1 = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset
        samplewise_center=False,  # set each sample mean to 0
        featurewise_std_normalization=
        False,  # divide inputs by std of the dataset
        samplewise_std_normalization=False,  # divide each input by its std
        zca_whitening=False,  # apply ZCA whitening
        rotation_range=
        15,  # randomly rotate images in the range (degrees, 0 to 180)
        width_shift_range=
        0.1,  # randomly shift images horizontally (fraction of total width)
        height_shift_range=
        0.1,  # randomly shift images vertically (fraction of total height)
        horizontal_flip=True,  # randomly flip images
        vertical_flip=False)  # randomly flip images

    datagen1.fit(train_images)

    hist = model.fit_generator(datagen1.flow(train_images,
                                             train_labels,
                                             batch_size=batch),
                               validation_data=(test_images, test_labels),
                               steps_per_epoch=train_images.shape[0] // batch,
                               epochs=cfg['epochs'],
                               callbacks=[checkpoint])

    df = pd.DataFrame.from_dict(hist.history)
    df.to_csv(os.path.join(save_dir, 'hist.csv'),
              encoding='utf-8',
              index=False)