from tensorflow import keras logdir = "./folder" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) from get_image_generator import train_generator, validation_generator, test_generator from model import model from meta_parameters import EPOCHS, STEPS_PER_EPOCH, VALIDATION_STEPS, BATCH_SIZE model.fit_generator( train_generator, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=validation_generator, validation_steps=VALIDATION_STEPS, use_multiprocessing=True, callbacks=[tensorboard_callback], ) model.save_weights('my_model_weights.h5') print("evaluate", model.metrics_names) print(model.evaluate_generator( test_generator, use_multiprocessing=True, )) model.count_params() model.summary() #TODO numbe of parameters # https://stackoverflow.com/questions/35792278/how-to-find-number-of-parameters-of-a-keras-model
from model import model, preprocess_input, smodel from keras.optimizers import SGD from keras.callbacks import ReduceLROnPlateau from generator import Generator import json if __name__ == '__main__': model = smodel() opt = SGD(lr=0.01, momentum=0.9) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['acc']) print(model.summary()) model.load_weights('weights/classifier.h5') listsss = json.load(open('list_withbndbx.json', 'r')) train_gen = Generator( listsss[:7211], '/home/palm/PycharmProjects/DATA/Tanisorn/imgCarResize/', preprocess_function=preprocess_input) test_gen = Generator( listsss[7211:], '/home/palm/PycharmProjects/DATA/Tanisorn/imgCarResize/', preprocess_function=preprocess_input) reduce_lr_01 = ReduceLROnPlateau(monitor='val_1st_acc', factor=0.2, patience=5, min_lr=0, mode='max') reduce_lr_02 = ReduceLROnPlateau(monitor='val_2nd_acc', factor=0.2,