def create_model(**kwargs): model = Model(**kwargs) model.add(number_of_neurons=6) model.add(number_of_neurons=3) model.add(number_of_neurons=1) return model
"optimizer": parse_option_value("-o", dflt=None), "epoch": parse_option_value("-e", dflt="100") } if check_option(options) is False: usage() return options if __name__ == "__main__": options = parse_options() # print(options) # dataset = Dataset("../data_training.csv") # dataset_test = Dataset("../data_test.csv") dataset = Dataset(None, 0.2) model = Model() model.add(Dense(64, activation="relu")) model.add(Dense(32, activation="relu")) model.add(Dense(2, activation="softmax")) # model.add(64, activation="relu") # model.add(32, activation="relu") # model.add(2, activation="softmax") model.compile(30, metrics=["accuracy"], optimizer="Adam") print(dataset.features.shape) print(dataset.test_features.shape) # print(dataset.features.shape) # print(numpy.min(model.weights[0])) history = model.fit( features=dataset.features, targets=dataset.targets, epochs=500, batch_size=32,
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import numpy as np from layers.activation import Activation from layers.dense import Dense from model.model import Model X_train = np.array([[[0, 0]], [[0, 1]], [[1, 0]], [[1, 1]]]) y_train = np.array([ [[0]], # F [[1]], # M [[1]], # M [[0]] # F ]) model = Model() model.add(Dense(2, 2)) model.add(Activation('tanh')) model.add(Dense(2, 2)) model.add(Activation('tanh')) model.add(Activation('softmax')) model.fit(X_train, y_train, epochs=1000, learning_rate=0.1) frank = np.array(X_train) # 155 pounts, 68 inches pred = model.predict(frank) print(np.array(pred))